Éc A Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7788567/publications.pdf

Version: 2024-02-01

70 papers

3,738 citations

36 h-index 59 g-index

74 all docs

74 docs citations

times ranked

74

3651 citing authors

#	Article	IF	CITATIONS
1	Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity. Journal of Virology, 2022, 96, e0012822.	3.4	64
2	Erratum for Essalmani et al., "Distinctive Roles of Furin and TMPRSS2 in SARS-CoV-2 Infectivity― Journal of Virology, 2022, 96, .	3.4	3
3	LILAC pilot study: Effects of metformin on mTOR activation and HIV reservoir persistence during antiretroviral therapy. EBioMedicine, 2021, 65, 103270.	6.1	46
4	L-Carnitine Tartrate Downregulates the ACE2 Receptor and Limits SARS-CoV-2 Infection. Nutrients, 2021, 13, 1297.	4.1	15
5	RALDH Activity Induced by Bacterial/Fungal Pathogens in CD16+ Monocyte-Derived Dendritic Cells Boosts HIV Infection and Outgrowth in CD4+ T Cells. Journal of Immunology, 2021, 206, 2638-2651.	0.8	7
6	Human Immunodeficiency Virus Type 1 Vpr Mediates Degradation of APC1, a Scaffolding Component of the Anaphase-Promoting Complex/Cyclosome. Journal of Virology, 2021, 95, e0097120.	3.4	2
7	HIV-1 Vpu Promotes Phagocytosis of Infected CD4 ⁺ T Cells by Macrophages through Downregulation of CD47. MBio, 2021, 12, e0192021.	4.1	11
8	Lentiviral Infections Persist in Brain despite Effective Antiretroviral Therapy and Neuroimmune Activation. MBio, 2021, 12, e0278421.	4.1	19
9	Interleukin- $1\hat{l}^2$ Triggers p53-Mediated Downmodulation of CCR5 and HIV-1 Entry in Macrophages through MicroRNAs 103 and 107. MBio, 2020, 11, .	4.1	13
10	HIV Infection and Persistence in Pulmonary Mucosal Double Negative T Cells In Vivo. Journal of Virology, 2020, 94, .	3.4	12
11	The HIV-1 Accessory Protein Vpu Downregulates Peroxisome Biogenesis. MBio, 2020, 11, .	4.1	18
12	Pharmacological Inhibition of PPAR _y Boosts HIV Reactivation and Th17 Effector Functions, while Preventing Progeny Virion Release and <i>de novo</i> Infection. Pathogens and Immunity, 2020, 5, 177.	3.1	12
13	Expression of MDM2 in Macrophages Promotes the Early Postentry Steps of HIV-1 Infection through Inhibition of p53. Journal of Virology, 2019, 93, .	3.4	13
14	Activation of the ILT7 receptor and plasmacytoid dendritic cell responses are governed by structurally-distinct BST2 determinants. Journal of Biological Chemistry, 2019, 294, 10503-10518.	3.4	8
15	Flt3L-Mediated Expansion of Plasmacytoid Dendritic Cells Suppresses HIV Infection in Humanized Mice. Cell Reports, 2019, 29, 2770-2782.e5.	6.4	23
16	HIV-1 is rarely detected in blood and colon myeloid cells during viral-suppressive antiretroviral therapy. Aids, 2019, 33, 1293-1306.	2.2	28
17	HIV-1 Vpr hijacks EDD-DYRK2-DDB1DCAF1 to disrupt centrosome homeostasis. Journal of Biological Chemistry, 2018, 293, 9448-9460.	3.4	18
18	Regulation of CD4 Receptor and HIV-1 Entry by MicroRNAs-221 and -222 during Differentiation of THP-1 Cells. Viruses, 2018, 10, 13.	3.3	14

#	Article	IF	CITATIONS
19	HIV-1 Vpu Downmodulates ICAM-1 Expression, Resulting in Decreased Killing of Infected CD4 + T Cells by NK Cells. Journal of Virology, 2017, 91, .	3.4	19
20	Host MicroRNAs-221 and -222 Inhibit HIV-1 Entry in Macrophages by Targeting the CD4 Viral Receptor. Cell Reports, 2017, 21, 141-153.	6.4	57
21	HIV persists in CCR6+CD4+ T cells from colon and blood during antiretroviral therapy. Aids, 2017, 31, 35-48.	2.2	122
22	Conserved residues within the HIV-1 Vpu transmembrane-proximal hinge region modulate BST2 binding and antagonism. Retrovirology, 2017, 14, 18.	2.0	5
23	HIV-1 Viral Protein R Activates NLRP3 Inflammasome in Microglia: implications for HIV-1 Associated Neuroinflammation. Journal of NeuroImmune Pharmacology, 2017, 12, 233-248.	4.1	97
24	The evaluation of risk-benefit ratio for gut tissue sampling in HIV cure research. Journal of Virus Eradication, 2017, 3, 212-217.	0.5	12
25	Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology, 2017, 14, 47.	2.0	57
26	The evaluation of risk-benefit ratio for gut tissue sampling in HIV cure research. Journal of Virus Eradication, 2017, 3, 212-217.	0.5	11
27	Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence. Viruses, 2016, 8, 67.	3.3	48
28	Indoleamine 2,3-Dioxygenase-Expressing Aortic Plasmacytoid Dendritic Cells Protect against Atherosclerosis by Induction of Regulatory T Cells. Cell Metabolism, 2016, 23, 852-866.	16.2	92
29	Differential Control of BST2 Restriction and Plasmacytoid Dendritic Cell Antiviral Response by Antagonists Encoded by HIV-1 Group M and O Strains. Journal of Virology, 2016, 90, 10236-10246.	3.4	12
30	Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration. Journal of Neuroscience, 2016, 36, 10683-10695.	3.6	66
31	Enhancing Virion Tethering by BST2 Sensitizes Productively and Latently HIV-infected T cells to ADCC Mediated by Broadly Neutralizing Antibodies. Scientific Reports, 2016, 6, 37225.	3.3	22
32	Assessing the Innate Sensing of HIV-1 Infected CD4 ⁺ T Cells by Plasmacytoid Dendritic Cells Using an Ex vivo Co-culture System Journal of Visualized Experiments, 2015, , .	0.3	1
33	Vpu Exploits the Cross-Talk between BST2 and the ILT7 Receptor to Suppress Anti-HIV-1 Responses by Plasmacytoid Dendritic Cells. PLoS Pathogens, 2015, 11, e1005024.	4.7	48
34	Attacking the Supply Lines: HIV-1 Restricts Alanine Uptake to Prevent T Cell Activation. Cell Host and Microbe, 2015, 18, 514-517.	11.0	6
35	HIV Nef and Vpu protect HIV-infected CD4+ T cells from antibody-mediated cell lysis through down-modulation of CD4 and BST2. Retrovirology, 2014, 11, 15.	2.0	105
36	From Arrest to Escape: HIV-1 Vpr Cuts a Deal. Cell Host and Microbe, 2014, 15, 125-127.	11.0	2

#	Article	IF	CITATIONS
37	Defining the Interactions and Role of DCAF1/VPRBP in the DDB1-Cullin4A E3 Ubiquitin Ligase Complex Engaged by HIV-1 Vpr to Induce a G2 Cell Cycle Arrest. PLoS ONE, 2014, 9, e89195.	2.5	16
38	Efficient BST2 antagonism by Vpu is critical for early HIV-1 dissemination in humanized mice. Retrovirology, 2013, 10, 128.	2.0	45
39	Viral protein R upregulates expression of ULBP2 on uninfected bystander cells during HIV-1 infection of primary CD4+ T lymphocytes. Virology, 2013, 443, 248-256.	2.4	14
40	Major histocompatibility complex class-II molecules promote targeting of human immunodeficiency virus type 1 virions in late endosomes by enhancing internalization of nascent particles from the plasma membrane. Cellular Microbiology, 2013, 15, 809-822.	2.1	5
41	Virus-Activated Interferon Regulatory Factor 7 Upregulates Expression of the Interferon-Regulated BST2 Gene Independently of Interferon Signaling. Journal of Virology, 2012, 86, 3513-3527.	3.4	53
42	Lentivirus Vpr and Vpx accessory proteins usurp the cullin4–DDB1 (DCAF1) E3 ubiquitin ligase. Current Opinion in Virology, 2012, 2, 755-763.	5. 4	56
43	Extracellular human immunodeficiency virus type 1 viral protein R causes reductions in astrocytic ATP and glutathione levels compromising the antioxidant reservoir. Virus Research, 2012, 167, 358-369.	2.2	33
44	HIVâ€1 Vpu Antagonizes BSTâ€2 by Interfering Mainly with the Trafficking of Newly Synthesized BSTâ€2 to the Cell Surface. Traffic, 2011, 12, 1714-1729.	2.7	51
45	Modulation of NKG2D-Mediated Cytotoxic Functions of Natural Killer Cells by Viral Protein R from HIV-1 Primary Isolates. Journal of Virology, 2011, 85, 12254-12261.	3.4	12
46	HIV-1 Vpr up-regulates expression of ligands for the activating NKG2D receptor and promotes NK cell–mediated killing. Blood, 2010, 115, 1354-1363.	1.4	138
47	HIV-1 Vpr Induces the K48-Linked Polyubiquitination and Proteasomal Degradation of Target Cellular Proteins To Activate ATR and Promote G ₂ Arrest. Journal of Virology, 2010, 84, 3320-3330.	3.4	43
48	HIVâ€1 viral protein R causes peripheral nervous system injury associated with ⟨i⟩in vivo⟨ i⟩ neuropathic pain. FASEB Journal, 2010, 24, 4343-4353.	0.5	59
49	MicroRNA profiling reveals new aspects of HIV neurodegeneration: caspaseâ€6 regulates astrocyte survival. FASEB Journal, 2010, 24, 1799-1812.	0.5	79
50	Antagonism of Tetherin Restriction of HIV-1 Release by Vpu Involves Binding and Sequestration of the Restriction Factor in a Perinuclear Compartment. PLoS Pathogens, 2010, 6, e1000856.	4.7	190
51	Formation of Mobile Chromatin-Associated Nuclear Foci Containing HIV-1 Vpr and VPRBP Is Critical for the Induction of G2 Cell Cycle Arrest. PLoS Pathogens, 2010, 6, e1001080.	4.7	56
52	Modulation of HIV-1-host interaction: role of the Vpu accessory protein. Retrovirology, 2010, 7, 114.	2.0	99
53	Effect of Calcium-Modulating Cyclophilin Ligand on Human Immunodeficiency Virus Type 1 Particle Release and Cell Surface Expression of Tetherin. Journal of Virology, 2009, 83, 13032-13036.	3.4	6
54	Suppression of Tetherin-Restricting Activity upon Human Immunodeficiency Virus Type 1 Particle Release Correlates with Localization of Vpu in the <i>trans</i> -Golgi Network. Journal of Virology, 2009, 83, 4574-4590.	3.4	130

#	Article	IF	Citations
55	Cell-surface processing of extracellular human immunodeficiency virus type 1 Vpr by proprotein convertases. Virology, 2008, 372, 384-397.	2.4	38
56	HIV-1 Vpr Causes Neuronal Apoptosis and <i>In Vivo </i> Neurodegeneration. Journal of Neuroscience, 2007, 27, 3703-3711.	3.6	126
57	HIV-1 Vpr-Mediated G2 Arrest Involves the DDB1-CUL4AVPRBP E3 Ubiquitin Ligase. PLoS Pathogens, 2007, 3, e85.	4.7	175
58	Productive Human Immunodeficiency Virus Type 1 Assembly Takes Place at the Plasma Membrane. Journal of Virology, 2007, 81, 7476-7490.	3.4	97
59	Role of envelope processing and gp41 membrane spanning domain in the formation of human immunodeficiency virus type 1 (HIV-1) fusionâ \in "competent envelope glycoprotein complex. Virus Research, 2007, 124, 103-112.	2.2	16
60	Requirements for the selective degradation of CD4 receptor molecules by the human immunodeficiency virus type $1\mathrm{Vpu}$ protein in the endoplasmic reticulum. Retrovirology, 2007, 4, 75.	2.0	83
61	Major Histocompatibility Complex Class II Molecules Promote Human Immunodeficiency Virus Type 1 Assembly and Budding to Late Endosomal/Multivesicular Body Compartments. Journal of Virology, 2006, 80, 9789-9797.	3.4	27
62	Vpu Exerts a Positive Effect on HIV-1 Infectivity by Down-modulating CD4 Receptor Molecules at the Surface of HIV-1-producing Cells. Journal of Biological Chemistry, 2003, 278, 28346-28353.	3.4	72
63	Human Jurkat lymphocytes clones differ in their capacity to support productive human immunodeficiency virus type 1 multiplication. Journal of Virological Methods, 2001, 92, 207-213.	2.1	5
64	Incorporation of Vpr into Human Immunodeficiency Virus Type 1 Requires a Direct Interaction with the p6 Domain of the p55 Gag Precursor. Journal of Biological Chemistry, 1999, 274, 9083-9091.	3.4	93
65	Structural and Functional Analysis of the Membrane-Spanning Domain of the Human Immunodeficiency Virus Type 1 Vpu Protein. Virology, 1998, 251, 96-107.	2.4	61
66	Human immunodeficiency virus type $1\mathrm{vpr}$ protein transactivation function: mechanism and identification of domains involved. Journal of Molecular Biology, 1998, 284, 915-923.	4.2	66
67	Human Immunodeficiency Virus Type 1 Vpr Is a Positive Regulator of  Viral Transcription and Infectivity in Primary Human Macrophages. Journal of Experimental Medicine, 1998, 187, 1103-1111.	8.5	131
68	Vpr Stimulates Viral Expression and Induces Cell Killing in Human Immunodeficiency Virus Type 1-Infected Dividing Jurkat T Cells. Journal of Virology, 1998, 72, 4686-4693.	3.4	162
69	Degradation of CD4 Induced by Human Immunodeficiency Virus Type 1 Vpu Protein: A Predicted Alpha-Helix Structure in the Proximal Cytoplasmic Region of CD4 Contributes to Vpu Sensitivity. Virology, 1995, 209, 615-623.	2.4	55
70	Identification of a protein encoded by the vpu gene of HIV-1. Nature, 1988, 334, 532-534.	27.8	330