Naoki Sasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7787486/publications.pdf

Version: 2024-02-01

840776 610901 32 574 11 24 citations h-index g-index papers 32 32 32 821 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	AC electroosmotic micromixer for chemical processing in a microchannel. Lab on A Chip, 2006, 6, 550.	6.0	130
2	Microcirculation-on-a-Chip: A Microfluidic Platform for Assaying Blood- and Lymphatic-Vessel Permeability. PLoS ONE, 2015, 10, e0137301.	2.5	102
3	Fluid mixing using AC electrothermal flow on meandering electrodes in a microchannel. Electrophoresis, 2012, 33, 2668-2673.	2.4	51
4	A palmtopâ€sized microfluidic cell culture system driven by a miniaturized infusion pump. Electrophoresis, 2012, 33, 1729-1735.	2.4	38
5	Pancreatic stellate cells derived from human pancreatic cancer demonstrate aberrant SPARC-dependent ECM remodeling in 3D engineered fibrotic tissue of clinically relevant thickness. Biomaterials, 2019, 192, 355-367.	11.4	32
6	Experimental and Theoretical Characterization of an AC Electroosmotic Micromixer. Analytical Sciences, 2010, 26, 815-819.	1.6	27
7	Microfluidics for nano-pathophysiology. Advanced Drug Delivery Reviews, 2014, 74, 115-121.	13.7	25
8	Bead-based padlock rolling circle amplification for single DNA molecule counting. Analytical Biochemistry, 2013, 437, 43-45.	2.4	23
9	Label-Free Rapid Separation and Enrichment of Bone Marrow-Derived Mesenchymal Stem Cells from a Heterogeneous Cell Mixture Using a Dielectrophoresis Device. Sensors, 2018, 18, 3007.	3.8	17
10	Recent Applications of AC Electrokinetics in Biomolecular Analysis on Microfluidic Devices. Analytical Sciences, 2012, 28, 3.	1.6	13
11	Alternating current cloud point extraction on a microchip for preconcentration of membrane-associated biomolecules. Lab on A Chip, 2009, 9, 1168.	6.0	12
12	Mechanistic investigation of bead-based padlock rolling circle amplification under molecular crowding conditions. Analytical Biochemistry, 2020, 593, 113596.	2.4	11
13	Spectroelectrochemical detection using thermal lens microscopy with a glass-substrate microelectrode-microchannel chip. Journal of Electroanalytical Chemistry, 2005, 577, 47-53.	3.8	10
14	Artificial chaperone-assisted refolding in a microchannel. Bioprocess and Biosystems Engineering, 2010, 33, 171-177.	3.4	10
15	Photoactivatable Hydrogel Interfaces for Resolving the Interplay of Chemical, Mechanical, and Geometrical Regulation of Collective Cell Migration. Langmuir, 2019, 35, 7459-7468.	3.5	10
16	Photolithography-Free Skin-on-a-Chip for Parallel Permeation Assays. Sensors and Materials, 2019, 31, 107.	0.5	9
17	A Membrane-integrated Microfluidic Device to Study Permeation of Nanoparticles through Straight Micropores toward Rational Design of Nanomedicines. Analytical Sciences, 2016, 32, 1307-1314.	1.6	8
18	Molecular crowding improves bead-based padlock rolling circle amplification. Analytical Biochemistry, 2017, 519, 15-18.	2.4	8

#	Article	IF	CITATIONS
19	Magnetic resonance imaging of a microvascular-interstitium model on a microfluidic device. Analytical Biochemistry, 2014, 458, 72-74.	2.4	6
20	Photochemical Immobilization of Cells onto a Glass Substrate for <i>in situ</i> DNA Analysis. Analytical Sciences, 2012, 28, 537-539.	1.6	5
21	Photolithography-free Vessel-on-a-chip to Simulate Tumor Cell Extravasation. Sensors and Materials, 2021, 33, 241.	0.5	5
22	Hydrodynamic Cell Pairing and Cell Fusion through a Microslit on a Microfluidic Device. Japanese Journal of Applied Physics, 2012, 51, 030206.	1.5	5
23	Alternating current cloud point extraction on a microchip: A comprehensive study. Electrophoresis, 2012, 33, 3159-3165.	2.4	4
24	Patterned Co-culture of Live Cells on a Microchip by Photocrosslinking with Benzophenone. Analytical Sciences, 2016, 32, 113-116.	1.6	4
25	Fabrication of a T-Shaped Microfluidic Channel Using a Consumer Laser Cutter and Application to Monodisperse Microdroplet Formation. Micromachines, 2021, 12, 160.	2.9	3
26	Fabrication of Microfluidic Cell Culture Devices Using a Consumer Laser Cutter. Bunseki Kagaku, 2018, 67, 379-386.	0.2	2
27	Bead-based Padlock Rolling Circle Amplification under Molecular Crowding Conditions: The Effects of Crowder Charge and Size. Analytical Sciences, 2021, 37, 727-732.	1.6	2
28	Hydrodynamic Cell Pairing and Cell Fusion through a Microslit on a Microfluidic Device. Japanese Journal of Applied Physics, 2012, 51, 030206.	1.5	1
29	Alternating current cloud point extraction on a microchip: The effect of electrode geometry. Electrophoresis, 2015, 36, 424-427.	2.4	1
30	AC Electrokinetics for Bioanalysis on a Microchip. Bunseki Kagaku, 2015, 64, 1-8.	0.2	0
31	Alternating Current Cloud Point Extraction on a Microfluidic Chip: the Use of Ferrocenyl Surfactants. Analytical Sciences, 2016, 32, 109-111.	1.6	0
32	Analytical Applications of Microfluidic Vascular Models. Bunseki Kagaku, 2016, 65, 241-247.	0.2	0