Christophe Heinrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7787244/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aberrant neuronal connectivity in the cortex drives generation of seizures in rat absence epilepsy. Brain, 2022, 145, 1978-1991.	7.6	8
2	Reprogramming reactive glia into interneurons reduces chronic seizure activity in a mouse model of mesial temporal lobe epilepsy. Cell Stem Cell, 2021, 28, 2104-2121.e10.	11.1	54
3	Evidence of Progenitor Cell Lineage Rerouting in the Adult Mouse Hippocampus After Status Epilepticus. Frontiers in Neuroscience, 2020, 14, 571315.	2.8	4
4	Direct Lineage Reprogramming for Brain Repair:ÂBreakthroughs and Challenges. Trends in Molecular Medicine, 2019, 25, 897-914.	6.7	32
5	HOPX Defines Heterogeneity of Postnatal Subventricular Zone NeuralÂStemÂCells. Stem Cell Reports, 2018, 11, 770-783.	4.8	34
6	Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival. Brain Stimulation, 2018, 11, 1336-1347.	1.6	38
7	Identification and Successful Negotiation of a Metabolic Checkpoint in Direct Neuronal Reprogramming. Cell Stem Cell, 2016, 18, 396-409.	11.1	307
8	In vivo reprogramming for tissue repair. Nature Cell Biology, 2015, 17, 204-211.	10.3	86
9	Sox2-Mediated Conversion of NG2 Glia into Induced Neurons in the Injured Adult Cerebral Cortex. Stem Cell Reports, 2014, 3, 1000-1014.	4.8	274
10	Reactive Glia in the Injured Brain Acquire Stem Cell Properties in Response to Sonic Hedgehog. Cell Stem Cell, 2013, 12, 426-439.	11.1	332
11	Reprogramming of Postnatal Astroglia of the Mouse Neocortex into Functional, Synapse-Forming Neurons. Methods in Molecular Biology, 2012, 814, 485-498.	0.9	23
12	Reprogramming of Pericyte-Derived Cells of the Adult Human Brain into Induced Neuronal Cells. Cell Stem Cell, 2012, 11, 471-476.	11.1	282
13	Inflammatory changes during epileptogenesis and spontaneous seizures in a mouse model of mesiotemporal lobe epilepsy. Epilepsia, 2011, 52, 2315-2325.	5.1	121
14	Generation of subtype-specific neurons from postnatal astroglia of the mouse cerebral cortex. Nature Protocols, 2011, 6, 214-228.	12.0	126
15	Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiology of Disease, 2011, 42, 35-47.	4.4	169
16	Neuronal Network Formation from Reprogrammed Early Postnatal Rat Cortical Glial Cells. Cerebral Cortex, 2011, 21, 413-424.	2.9	43
17	Directing Astroglia from the Cerebral Cortex into Subtype Specific Functional Neurons. PLoS Biology, 2010, 8, e1000373.	5.6	447
18	Granule cell dispersion develops without neurogenesis and does not fully depend on astroglial cell generation in a mouse model of temporal lobe epilepsy. Epilepsia, 2008, 49, 1711-1722.	5.1	36

#	Article	IF	CITATIONS
19	Granule cell dispersion is not accompanied by enhanced neurogenesis in temporal lobe epilepsy patients. Experimental Neurology, 2007, 203, 320-332.	4.1	112
20	Reelin Deficiency and Displacement of Mature Neurons, But Not Neurogenesis, Underlie the Formation of Granule Cell Dispersion in the Epileptic Hippocampus. Journal of Neuroscience, 2006, 26, 4701-4713.	3.6	295
21	Glutamate Receptor Antagonists and Benzodiazepine Inhibit the Progression of Granule Cell Dispersion in a Mouse Model of Mesial Temporal Lobe Epilepsy. Epilepsia, 2005, 46, 193-202.	5.1	53