
Ivan Y Pavlov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7787234/publications.pdf Version: 2024-02-01

Ινανι Υ Ρανιών

#	Article	IF	CITATIONS
1	KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition. Nature Communications, 2019, 10, 1225.	12.8	75
2	GABAergic Interneurons in Seizures: Investigating Causality With Optogenetics. Neuroscientist, 2019, 25, 344-358.	3.5	71
3	Activity Clamp Provides Insights into Paradoxical Effects of the Anti-Seizure Drug Carbamazepine. Journal of Neuroscience, 2017, 37, 5484-5495.	3.6	10
4	Astrocytic GABA transporter activity modulates excitatory neurotransmission. Nature Communications, 2016, 7, 13572.	12.8	144
5	Optogenetic approaches to treat epilepsy. Journal of Neuroscience Methods, 2016, 260, 215-220.	2.5	44
6	Synaptic GABA release prevents GABA transporter type-1 reversal during excessive network activity. Nature Communications, 2015, 6, 6597.	12.8	31
7	Tonic GABA _A conductance bidirectionally controls interneuron firing pattern and synchronization in the CA3 hippocampal network. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 504-509.	7.1	56
8	From Treatment to Cure. International Review of Neurobiology, 2014, 114, 279-299.	2.0	2
9	The Role of Extrasynaptic GABAA Receptors in Focal Epilepsy. Receptors, 2014, , 207-221.	0.2	0
10	Differential triggering of spontaneous glutamate release by P/Q-, N- and R-type Ca2+ channels. Nature Neuroscience, 2013, 16, 1754-1763.	14.8	130
11	Tonic GABAA receptor-mediated signalling in temporal lobe epilepsy. Neuropharmacology, 2013, 69, 55-61.	4.1	52
12	GABA-Independent GABA _A Receptor Openings Maintain Tonic Currents. Journal of Neuroscience, 2013, 33, 3905-3914.	3.6	85
13	Cortical inhibition, pH and cell excitability in epilepsy: what are optimal targets for antiepileptic interventions?. Journal of Physiology, 2013, 591, 765-774.	2.9	64
14	A functional role for both γâ€aminobutyric acid (GABA) transporterâ€1 and GABA transporterâ€3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus. Journal of Physiology, 2013, 591, 2429-2441.	2.9	118
15	Progressive loss of phasic, but not tonic, GABAA receptor-mediated inhibition in dentate granule cells in a model of post-traumatic epilepsy in rats. Neuroscience, 2011, 194, 208-219.	2.3	88
16	Ih-mediated depolarization enhances the temporal precision of neuronal integration. Nature Communications, 2011, 2, 199.	12.8	54
17	How much inhibition in an epileptiform burst?. Journal of Physiology, 2010, 588, 17-18.	2.9	3
18	A 'sustain pedal' in the hippocampus?. Nature Neuroscience, 2010, 13, 146-148.	14.8	5

IVAN Y PAVLOV

#	Article	IF	CITATIONS
19	Outwardly Rectifying Tonically Active GABA _A Receptors in Pyramidal Cells Modulate Neuronal Offset, Not Gain. Journal of Neuroscience, 2009, 29, 15341-15350.	3.6	111
20	Computational Sophistication at a Single GABAergic Connection. Neuron, 2009, 63, 716-718.	8.1	1
21	Altered Synaptic Dynamics and Hippocampal Excitability but Normal Long-Term Plasticity in Mice Lacking Hyperpolarizing GABA _A Receptor-Mediated Inhibition in CA1 Pyramidal Neurons. Journal of Neurophysiology, 2008, 99, 3075-3089.	1.8	21
22	Cholinergic Axons Modulate GABAergic Signaling among Hippocampal Interneurons via Postsynaptic Â7 Nicotinic Receptors. Journal of Neuroscience, 2007, 27, 5683-5693.	3.6	68
23	Processing acoustic change and novelty in newborn infants. European Journal of Neuroscience, 2007, 26, 265-274.	2.6	95
24	The Two Thrombospondin Type I Repeat Domains of HB-GAM Display a Cooperative Function in N-syndecan Binding and Regulation of Synaptic Plasticity. Scientific World Journal, The, 2006, 6, 406-409.	2.1	4
25	The Two Thrombospondin Type I Repeat Domains of the Heparin-binding Growth-associated Molecule Bind to Heparin/Heparan Sulfate and Regulate Neurite Extension and Plasticity in Hippocampal Neurons. Journal of Biological Chemistry, 2005, 280, 41576-41583.	3.4	38
26	Synergistic action of GABA-A and NMDA receptors in the induction of long-term depression in glutamatergic synapses in the newborn rat hippocampus. European Journal of Neuroscience, 2004, 20, 3019-3026.	2.6	22
27	The role of ECM molecules in activity-dependent synaptic development and plasticity. Birth Defects Research Part C: Embryo Today Reviews, 2004, 72, 12-24.	3.6	30
28	Activity blockade increases the number of functional synapses in the hippocampus of newborn rats. Molecular and Cellular Neurosciences, 2003, 22, 107-117.	2.2	52
29	Role of Heparin-Binding Growth-Associated Molecule (HB-GAM) in Hippocampal LTP and Spatial Learning Revealed by Studies on Overexpressing and Knockout Mice. Molecular and Cellular Neurosciences, 2002, 20, 330-342.	2.2	85
30	Syndecan-3-Deficient Mice Exhibit Enhanced LTP and Impaired Hippocampus-Dependent Memory. Molecular and Cellular Neurosciences, 2002, 21, 158-172.	2.2	156