Roel Baets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7786952/publications.pdf

Version: 2024-02-01

163 papers 8,961 citations

57758 44 h-index 92 g-index

164 all docs

164 docs citations

164 times ranked 7501 citing authors

#	Article	IF	CITATIONS
1	Optical Versus RF Free-Space Signal Transmission: A Comparison of Optical and RF Receivers Based on Noise Equivalent Power and Signal-to-Noise Ratio. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-8.	2.9	2
2	PIXAPP Photonics Packaging Pilot Line $\hat{a} \in \hat{b}$ Development of a Silicon Photonic Optical Transceiver With Pluggable Fiber Connectivity. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-11.	2.9	9
3	Pilot Testing of the "Turbidimeterâ€, a Simple, Universal Reader Intended to Complement and Enhance Bacterial Growth Detection in Manual Blood Culture Systems in Low-Resource Settings. Diagnostics, 2022, 12, 615.	2.6	2
4	Angled Flip-Chip Integration of VCSELs on Silicon Photonic Integrated Circuits. Journal of Lightwave Technology, 2022, 40, 5190-5200.	4.6	3
5	Miniaturization of Laser Doppler Vibrometers—A Review. Sensors, 2022, 22, 4735.	3.8	12
6	Lossless High-speed Silicon Photonic MZI switch with a Micro-Transfer-Printed III-V amplifier. , 2022, , .		0
7	ALD Pt nanoparticles and thin-film coatings enhancing the stability and performance of silicon photocathodes for solar water splitting. Sustainable Energy and Fuels, 2021, 5, 3115-3123.	4.9	2
8	Gold-induced photothermal background in on-chip surface enhanced stimulated Raman spectroscopy. Optics Letters, 2021, 46, 953.	3.3	1
9	Ultra-sensitive slot-waveguide-enhanced Raman spectroscopy for aqueous solutions of non-polar compounds using a functionalized silicon nitride photonic integrated circuit. Optics Letters, 2021, 46, 1153.	3.3	7
10	Nonlinear signal errors in homodyne laser Doppler vibrometry induced by strong second-order ghost reflections and their mitigation. Optics Express, 2021, 29, 8283.	3.4	4
11	Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Advanced Photonics, 2021, 3, .	11.8	151
12	Tantalum Pentoxide Slot Waveguides for Waveguide Enhanced Raman Spectroscopy. , 2021, , .		0
13	A Miniaturised, Fully Integrated NDIR CO2 Sensor On-Chip. Sensors, 2021, 21, 5347.	3.8	21
14	Influence of optical amplifiers for on-chip homodyne laser Doppler vibrometers. Journal of Physics: Conference Series, 2021, 2041, 012005.	0.4	0
15	Template Matching and Matrix Profile for Signal Quality Assessment of Carotid and Femoral Laser Doppler Vibrometer Signals. Frontiers in Physiology, 2021, 12, 775052.	2.8	4
16	Surface-Enhanced Raman Spectroscopy Based on Plasmonic Slot Waveguides With Free-Space Oblique Illumination. IEEE Journal of Quantum Electronics, 2020, 56, 1-8.	1.9	5
17	Ultra-sensitive refractive index gas sensor with functionalized silicon nitride photonic circuits. APL Photonics, 2020, 5, 081301.	5.7	33
18	Vertically coupled InP/InGaAsP microring lasers using a single epitaxial growth and single-side lithography. Journal of Lightwave Technology, 2020, , 1-1.	4.6	1

#	Article	IF	CITATIONS
19	Silicon photonics-based laser Doppler vibrometer array for carotid-femoral pulse wave velocity (PWV) measurement. Biomedical Optics Express, 2020, 11, 3913.	2.9	13
20	Waveguide-based surface-enhanced Raman spectroscopy detection of protease activity using non-natural aromatic amino acids. Biomedical Optics Express, 2020, 11, 4800.	2.9	8
21	Transfer-print integration of GaAs p-i-n photodiodes onto silicon nitride waveguides for near-infrared applications. Optics Express, 2020, 28, 21275.	3.4	23
22	3D-printed optical probes for wafer-level testing of photonic integrated circuits. Optics Express, 2020, 28, 37996.	3.4	17
23	Mitigation of photon background in nanoplasmonic all-on-chip Raman sensors. Optics Express, 2020, 28, 33564.	3.4	8
24	Multiplex volatile organic compound Raman sensing with nanophotonic slot waveguides functionalized with a mesoporous enrichment layer. Optics Letters, 2020, 45, 447.	3.3	17
25	Micro-Transfer-Printing for III-V/Si PICs. , 2020, , .		1
26	Widely Tunable IIIâ€"V/Silicon Lasers for Spectroscopy in the Short-Wave Infrared. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-12.	2.9	8
27	III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics, 2019, 4, .	5.7	108
28	On-Chip Non-Dispersive Infrared CO2 Sensor Based On an Integrating Cylinder. Sensors, 2019, 19, 4260.	3.8	25
29	Plasma-Enhanced Atomic Layer Deposition of Nanostructured Gold Near Room Temperature. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37229-37238.	8.0	12
30	Comparison of Free-Space and Waveguide-Based SERS Platforms. Nanomaterials, 2019, 9, 1401.	4.1	20
31	SERS Detection via Individual Bowtie Nanoantennas Integrated in Si ₃ N ₄ Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-6.	2.9	15
32	Open-Access Silicon Photonics Platforms in Europe. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-18.	2.9	82
33	Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica, 2019, 6, 213.	9.3	125
34	High speed phase modulators for silicon photonic integrated circuits: a role for lithium niobate?. Advanced Photonics, 2019, 1, 1.	11.8	8
35	High-power single transverse and polarization mode VCSEL for silicon photonics integration. Optics Express, 2019, 27, 18892.	3.4	33
36	High index contrast photonic platforms for on-chip Raman spectroscopy. Optics Express, 2019, 27, 23067.	3.4	37

#	Article	IF	CITATIONS
37	Integrated silicon nitride electro-optic modulators with atomic layer deposited overlays. Optics Letters, 2019, 44, 1112.	3.3	23
38	Mitigation of speckle noise in laser Doppler vibrometry by using a scanning average method. Optics Letters, 2019, 44, 1860.	3.3	10
39	High extinction ratio on-chip pump-rejection filter based on cascaded grating-assisted contra-directional couplers in silicon nitride rib waveguides. Optics Letters, 2019, 44, 2310.	3.3	27
40	Integrated Silicon-on-Insulator Spectrometer With Single Pixel Readout for Mid-Infrared Spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-7.	2.9	22
41	Porous multi-junction thin-film silicon solar cells for scalable solar water splitting. Solar Energy Materials and Solar Cells, 2018, 182, 196-203.	6.2	18
42	Open-Access Silicon Photonics: Current Status and Emerging Initiatives. Proceedings of the IEEE, 2018, 106, 2313-2330.	21.3	164
43	Special Issue of Silicon Photonics [Scanning the Issue]. Proceedings of the IEEE, 2018, 106, 2098-2100.	21.3	3
44	Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna. Nanophotonics, 2018, 7, 1299-1306.	6.0	22
45	ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy. APL Photonics, 2018, 3, .	5.7	35
46	20 Years of Silicon Photonics: Lessons Learned, Lessons to be Learned. , 2018, , .		0
47	Photonic Integrated Circuit-Based FMCW Coherent LiDAR. Journal of Lightwave Technology, 2018, 36, 4640-4645.	4.6	120
48	Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology. Optics Express, 2018, 26, 3638.	3.4	34
49	Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials. Optica, 2018, 5, 328.	9.3	30
50	Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide. Optics Letters, 2018, 43, 1403.	3.3	32
51	Widely tunable 23  μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing. Photonics Research, 2018, 6, 858.	7.0	47
52	Hybrid integration of laser source on silicon photonic integrated circuit for low-cost interferometry medical device. Proceedings of SPIE, 2017, , .	0.8	6
53	Nonvolatile Liquid Controlled Adiabatic Silicon Photonics Switch. Journal of Lightwave Technology, 2017, 35, 2948-2954.	4.6	9

Thermal Brillouin noise observed in silicon optomechanical waveguide. Journal of Optics (United) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 6

#	Article	IF	CITATIONS
55	On the determination of \ddagger (2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies. Scientific Reports, 2017, 7, 44581.	3.3	23
56	Gold nanodome SERS platform for label-free detection of protease activity. Faraday Discussions, 2017, 205, 345-361.	3.2	20
57	Novel Light Source Integration Approaches for Silicon Photonics. Laser and Photonics Reviews, 2017, 11, 1700063.	8.7	143
58	Expanding the Silicon Photonics Portfolio With Silicon Nitride Photonic Integrated Circuits. Journal of Lightwave Technology, 2017, 35, 639-649.	4.6	232
59	CMOS-compatible broadband co-propagative stationary Fourier transform spectrometer integrated on a silicon nitride photonics platform. Optics Express, 2017, 25, A409.	3.4	59
60	Broad wavelength coverage 23  μm III-V-on-silicon DFB laser array. Optica, 2017, 4, 972.	9.3	29
61	On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides. Optics Express, 2017, 25, 12926.	3.4	45
62	Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy. Materials, 2017, 10, 140.	2.9	34
63	Ill–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 Î⅓m Wavelength Range. Sensors, 2017, 17, 1788.	3.8	60
64	High resolution silicon-on-insulator mid-infrared spectrometers operating at 3.3 \hat{l}_{4} m., 2017, , .		0
65	CMOS-Compatible ALD Zinc Oxide Coating for On-Chip Second-Order Nonlinear Optical Functionalities. , 2017, , .		1
66	PLAT4M: Progressing Silicon Photonics in Europe. Photonics, 2016, 3, 1.	2.0	24
67	23 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. Optics Express, 2016, 24, 21081.	3.4	36
68	Heterogeneously integrated Ill–V-on-silicon 2.3x <i>μ</i> m distributed feedback lasers based on a type-Il active region. Applied Physics Letters, 2016, 109, .	3.3	21
69	Extreme spectral transmission fluctuations in silicon nanowires induced by backscattering. , 2016, , .		2
70	III-V-on-silicon 2-µm-wavelength-range wavelength demultiplexers with heterogeneously integrated InP-based type-II photodetectors. Optics Express, 2016, 24, 8480.	3.4	34
71	Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy. Interface Focus, 2016, 6, 20160015.	3.0	30
72	Unifying Brillouin scattering and cavity optomechanics. Physical Review A, 2016, 93, .	2.5	50

#	Article	IF	CITATIONS
73	Nanophotonic Waveguide Enhanced Raman Spectroscopy of Biological Submonolayers. ACS Photonics, 2016, 3, 2141-2149.	6.6	70
74	Low Loss CMOS-Compatible PECVD Silicon Nitride Waveguides and Grating Couplers for Blue Light Optogenetic Applications. IEEE Photonics Journal, 2016, 8, 1-11.	2.0	29
75	Surface Enhanced Raman Spectroscopy Using a Single Mode Nanophotonic-Plasmonic Platform. ACS Photonics, 2016, 3, 102-108.	6.6	95
76	CMOS-compatible silicon nitride spectrometers for lab-on-a-chip spectral sensing. Proceedings of SPIE, 2016, , .	0.8	11
77	Transfer-printing-based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters. Optics Express, 2016, 24, 13754.	3.4	64
78	Silicon photonics for on-chip spectrophotometry. , 2015, , .		0
79	2 \hat{l} /4m wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. Optics Express, 2015, 23, 26834.	3.4	35
80	Net on-chip Brillouin gain based on suspended silicon nanowires. New Journal of Physics, 2015, 17, 115005.	2.9	59
81	Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited]. Photonics Research, 2015, 3, B47.	7.0	173
82	III-V-on-Silicon Photonic Devices for Optical Communication and Sensing. Photonics, 2015, 2, 969-1004.	2.0	103
83	Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides. Optics Express, 2015, 23, 27391.	3.4	54
84	Silicon-integrated short-wavelength hybrid-cavity VCSEL. Optics Express, 2015, 23, 33634.	3.4	30
85	Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nature Photonics, 2015, 9, 199-203.	31.4	283
86	An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nature Communications, 2015, 6, 6310.	12.8	191
87	Vertically coupled microring resonators using one epitaxial growth step and single-side lithography. Optics Express, 2015, 23, 5317.	3.4	8
88	Bright and dark plasmon resonances of nanoplasmonic antennas evanescently coupled with a silicon nitride waveguide. Optics Express, 2015, 23, 3088.	3.4	54
89	Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy. Analyst, The, 2015, 140, 8080-8087.	3.5	19
90	Observation of 4.4 dB Brillouin gain in a silicon photonic wire. , 2014, , .		1

#	Article	IF	CITATIONS
91	Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides. Optics Letters, 2014, 39, 4025.	3.3	117
92	Analysis of enhanced stimulated Brillouin scattering in silicon slot waveguides. Optics Letters, 2014, 39, 1242.	3.3	35
93	Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography. Biomedical Optics Express, 2014, 5, 1050.	2.9	75
94	Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 394-404.	2.9	106
95	What is — and what is not — an optical isolator. Nature Photonics, 2013, 7, 579-582.	31.4	712
96	Nonlinear absorption and refraction in crystalline silicon in the midâ€infrared. Laser and Photonics Reviews, 2013, 7, 1054-1064.	8.7	77
97	Measurement of small molecule diffusion with an optofluidic silicon chip. Lab on A Chip, 2013, 13, 4392.	6.0	14
98	Beam steering for wireless optical links based on an optical phased array in silicon. Annales Des Telecommunications/Annals of Telecommunications, 2013, 68, 57-62.	2.5	13
99	An ultra-small silicon laser. Nature, 2013, 498, 447-448.	27.8	4
100	Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids. Optics Express, 2013, 21, 13342.	3.4	28
101	On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement. Biomedical Optics Express, 2013, 4, 1229.	2.9	35
102	Silicon-based heterogeneous photonic integrated circuits for the mid-infrared. Optical Materials Express, 2013, 3, 1523.	3.0	65
103	Nonlinear Optics in Silicon Wire Waveguides: Towards Integrated Long Wavelength Light Sources. Materials Research Society Symposia Proceedings, 2012, 1437, 58.	0.1	0
104	Low-power inelastic light scattering at small detunings in silicon wire waveguides at telecom wavelengths. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1977.	2.1	10
105	Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides. Applied Optics, 2012, 51, 1251.	1.8	26
106	Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. Optics Express, 2012, 20, 11855.	3.4	69
107	Miniaturized laser Doppler vibrometers integrated on silicon-on-insulator with thermo-optic serrodyne optical frequency shifter. , 2012, , .		0
108	A Label-Free Optical Biosensor Built on a Low-Cost Polymer Platform. IEEE Photonics Journal, 2012, 4, 920-930.	2.0	38

#	Article	IF	CITATIONS
109	Near-Infrared Grating Couplers for Silicon Nitride Photonic Wires. IEEE Photonics Technology Letters, 2012, 24, 1700-1703.	2.5	46
110	Silicon carrier-depletion-based Mach-Zehnder and ring modulators with different doping patterns for telecommunication and optical interconnect. , 2012, , .		2
111	A polymer-based surface grating coupler with an embedded Si3N4 layer. Journal of Applied Physics, 2012, 111, .	2.5	16
112	Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nature Photonics, 2012, 6, 667-671.	31.4	141
113	Efficient Light Collection and Direction-of-Arrival Estimation Using a Photonic Integrated Circuit. IEEE Photonics Technology Letters, 2012, 24, 933-935.	2.5	2
114	NEMS-based optical phase modulator fabricated on Silicon-On-Insulator., 2011,,.		8
115	Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator. IEEE Photonics Technology Letters, 2011, 23, 1270-1272.	2.5	100
116	Widely tunable silicon mid-infrared optical parametric oscillator., 2011,,.		1
117	On-Chip Arrayed Waveguide Grating Interrogated Silicon-on-Insulator Microring Resonator-Based Gas Sensor. IEEE Photonics Technology Letters, 2011, 23, 1505-1507.	2.5	46
118	One-Dimensional Off-Chip Beam Steering and Shaping Using Optical Phased Arrays on Silicon-on-Insulator. Journal of Lightwave Technology, 2011, 29, 3500-3505.	4.6	46
119	Widely tunable silicon-on-insulator ring resonators with a liquid crystal cladding. , 2011, , .		1
120	Compact lens-assisted focusing tapers fabricated on silicon-on-insulator., 2011,,.		12
121	Nonlinear silicon nanophotonics for mid-infrared applications. , 2011, , .		1
122	Optical Interconnect Technologies based on Silicon Photonics. Materials Research Society Symposia Proceedings, 2011, 1335, 113.	0.1	1
123	Building a sustainable future for silicon photonics. , 2011, , .		4
124	Light collection from scattering media in a silicon photonics integrated circuit., 2011,,.		1
125	Hybrid Integrated Platforms for Silicon Photonics. Materials, 2010, 3, 1782-1802.	2.9	242
126	All-Optical 2R Regeneration Using the Hysteresis in a Distributed Feedback Laser Diode. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1434-1440.	2.9	16

#	Article	IF	Citations
127	Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 33-44.	2.9	418
128	An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nature Photonics, 2010, 4, 182-187.	31.4	369
129	Two-dimensional dispersive beam steerer fabricated on silicon-on-insulator., 2010,,.		2
130	Chip-to-chip optical wireless link feasibility using optical phased arrays on silicon-on-insulator. , 2010,		1
131	An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film. Optics Express, 2010, 18, 11859.	3.4	142
132	Optical frequency shifter on SOI using thermo-optic serrodyne modulation. , 2010, , .		6
133	A PSQ-L polymer microring resonator fabricated by a simple UV-based soft-lithography process. , 2009, , .		O
134	Compact demultiplexer using cascaded planar concave grating and ring resonators on SOI., 2009,,.		0
135	Silica-based optical interposer for Si photonics. , 2009, , .		2
136	Athermal SOI ring resonators by overlaying a polymer cladding on narrowed waveguides., 2009,,.		4
137	Tunable optical forces between nanophotonic waveguides. Nature Nanotechnology, 2009, 4, 510-513.	31.5	137
138	Metal Grating Patterning on Fiber Facets by UV-Based Nano Imprint and Transfer Lithography Using Optical Alignment. Journal of Lightwave Technology, 2009, 27, 1415-1420.	4.6	41
139	40-Gb/s All-Optical Packet Switching With a Distributed-Feedback Laser as All-Optical Flip-Flop. IEEE Photonics Technology Letters, 2009, 21, 703-705.	2.5	17
140	All-Optical Flip-Flop Operation in a Standard Tunable DBR Laser Diode. IEEE Photonics Technology Letters, 2009, 21, 1873-1875.	2.5	16
141	Silicon-on-insulator microring resonator for ultra dense WDM applications. , 2009, , .		2
142	Investigation of evanescent coupling between SOI waveguides and heterogeneously-integrated III–V pin photodetectors. , 2009, , .		4
143	Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator. IEEE Photonics Journal, 2009, 1, 197-204.	2.0	353
144	Multiplexed Antibody Detection With an Array of Silicon-on-Insulator Microring Resonators. IEEE Photonics Journal, 2009, 1, 225-235.	2.0	119

#	Article	IF	Citations
145	Proposal for an All-Optical Flip-Flop Using a Single Distributed Feedback Laser Diode. IEEE Photonics Technology Letters, 2008, 20, 18-20.	2.5	31
146	A Compact SOI-Integrated Multiwavelength Laser Source Based on Cascaded InP Microdisks. IEEE Photonics Technology Letters, 2008, 20, 1345-1347.	2.5	103
147	Design and Optimization of Electrically Injected InP-Based Microdisk Lasers Integrated on and Coupled to a SOI Waveguide Circuit. Journal of Lightwave Technology, 2008, 26, 52-63.	4.6	40
148	Experimental demonstration of all-optical flip-flop operation with a single distributed feedback laser diode. , 2008, , .		2
149	A Noncontact Approach for the Evaluation of Large Artery Stiffness: A Preliminary Study. American Journal of Hypertension, 2008, 21, 1280-1283.	2.0	47
150	All-optical wavelength converter with InP micro-disk laser integrated on SOI. , 2008, , .		1
151	Experimental characterization of biosensor based on surface plasmon nano interferometer., 2008,,.		0
152	Ultralow-power all-optical wavelength conversion in a silicon-on-insulator waveguide based on a heterogeneously integrated III-V microdisk laser. Applied Physics Letters, 2008, 93, 061107.	3.3	12
153	Flexible metal grating based optical fiber probe for photonic integrated circuits. Applied Physics Letters, 2008, 92, .	3.3	57
154	Fabrication of nanophotonic circuit components by thermal nano imprint lithography. , 2008, , .		2
155	Efficient, Broadband and Compact Metal Grating Couplers for Silicon-on-Insulator Waveguides. , 2007, , .		3
156	lodine enhanced focused-ion-beam etching of silicon for photonic applications. Journal of Applied Physics, 2007, 102, .	2.5	10
157	Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Optics Express, 2007, 15, 7610.	3.4	748
158	UV-based Nano Imprint Fabrication of Gold Grating Couplers on Silicon-on-Insulator. LEOS Summer Topical Meeting, 2007, , .	0.0	1
159	Study of a Magnetooptic Contact for an Amplifying Waveguide Optical Isolator. IEEE Photonics Technology Letters, 2007, 19, 659-661.	2.5	6
160	Amplifying Waveguide Optical Isolator With an Integrated Electromagnet. IEEE Photonics Technology Letters, 2007, 19, 1949-1951.	2.5	6
161	Adaptive spatial resolution: application to surface plasmon waveguide modes. Optical and Quantum Electronics, 2007, 38, 857-867.	3.3	11
162	Focused-ion-beam fabricated vertical fiber couplers on silicon-on-insulator waveguides. Applied Physics Letters, 2006, 89, 141102.	3.3	20

#	Article	IF	CITATIONS
163	Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Optics Letters, 2004, 29, 2749.	3.3	559