
Zhangjing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7786292/publications.pdf Version: 2024-02-01

ΖΗΛΝΟΙΙΝΟ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Structural Isomerization in Cu(I) Clusters: Tracing the Cu Thermal Migration Paths and Unveiling the Structure-Dependent Photoluminescence. CCS Chemistry, 2023, 5, 350-360.	7.8	7
2	Twoâ€dimensional Metalâ€organic Frameworks for Electrochemical CO ₂ Reduction Reaction. ChemCatChem, 2022, 14, .	3.7	17
3	Multifunctional anionic metal-organic frameworks enhancing stability of perovskite solar cells. Chemical Engineering Journal, 2022, 433, 133587.	12.7	11
4	Mixing halogens improves the passivation effects of amine halide on perovskite. Electrochimica Acta, 2022, 405, 139782.	5.2	2
5	In Situ Etching Strategy to Controllably Fabricate Single-Crystal Metal–Organic Framework Microtubes. Crystal Growth and Design, 2022, 22, 1521-1527.	3.0	3
6	Single-phase proton- and electron-conducting Ag-organic coordination polymers for efficient CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 3216-3225.	10.3	7
7	Amidinium sulfonate hydrogen-bonded organic framework with fluorescence amplification function for sensitive aniline detection. Chinese Chemical Letters, 2022, 33, 4317-4320.	9.0	18
8	Electrostatic force-driven lattice water bridging to stabilize a partially charged indium MOF for efficient separation of C ₂ H ₂ /CO ₂ mixtures. Journal of Materials Chemistry A, 2022, 10, 9363-9369.	10.3	17
9	Two Water Stable Phosphateâ€Amidinium Based Hydrogenâ€Bonded Organic Framework with Proton Conduction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	1.2	5
10	Framework-Shrinkage-Induced Wavelength-Switchable Lasing from a Single Hydrogen-Bonded Organic Framework Microcrystal. Journal of Physical Chemistry Letters, 2022, 13, 130-135.	4.6	24
11	Hydrogenâ€Bonded Organic Frameworks: Functionalized Construction Strategy by Nitrogenâ€Containing Functional Group. Chemistry - A European Journal, 2022, 28, .	3.3	20
12	A Microporous Hydrogen-Bonded Organic Framework for Efficient Xe/Kr Separation. ACS Applied Materials & Interfaces, 2022, 14, 19623-19628.	8.0	44
13	Switched Proton Conduction in Metal–Organic Frameworks. Jacs Au, 2022, 2, 1043-1053.	7.9	30
14	Isoreticular Double Interpenetrating Copper–Pyrazolate–Carboxylate Frameworks for Efficient CO ₂ Capture. Crystal Growth and Design, 2022, 22, 3853-3861.	3.0	5
15	A photochromic NDI-based framework for the facile hydrazine sensor. Inorganic Chemistry Communication, 2022, 141, 109497.	3.9	3
16	An Ultramicroporous Hydrogenâ€Bonded Organic Framework Exhibiting High C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
17	High proton conductivity in metalloring-cluster based metal-organic nanotubes. Nano Research, 2021, 14, 387-391.	10.4	19
18	A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Research, 2021, 14, 507-511.	10.4	57

#	Article	IF	CITATIONS
19	Simultaneous defect passivation and hole mobility enhancement of perovskite solar cells by incorporating anionic metal-organic framework into hole transport materials. Chemical Engineering Journal, 2021, 408, 127328.	12.7	26
20	Controlled Shape Evolution of Pureâ€MOF 1D Microcrystals towards Efficient Waveguide and Laser Applications. Chemistry - A European Journal, 2021, 27, 3297-3301.	3.3	14
21	Mitigation of vacancy with ammonium salt-trapped ZIF-8 capsules for stable perovskite solar cells through simultaneous compensation and loss inhibition. Nanoscale Advances, 2021, 3, 3554-3562.	4.6	13
22	Two Tb-metal organic frameworks with different metal cluster nodes for C ₂ H ₂ /CO ₂ separation. Dalton Transactions, 2021, 50, 4932-4935.	3.3	5
23	Dual-functional hydrogen-bonded organic frameworks for aniline and ultraviolet sensitive detection. Chinese Chemical Letters, 2021, 32, 3109-3112.	9.0	23
24	Lithium–Sulfur Batteries: Metallic MoS ₂ Nanoflowers Decorated Graphene Nanosheet Catalytically Boosts the Volumetric Capacity and Cycle Life of Lithium–Sulfur Batteries (Adv. Energy) Tj ETQq0	0	Oværlock 10
25	Separation and Purification of Xylene by Self-Assembly of a Tunable N → B Adduct. Crystal Growth and Design, 2021, 21, 3168-3174.	3.0	4
26	Threefold Collaborative Stabilization of Ag ₁₄ â€Nanorods by Hydrophobic Ti ₁₆ â€Oxo Clusters and Alkynes: Designable Assembly and Solidâ€State Opticalâ€Limiting Application. Angewandte Chemie - International Edition, 2021, 60, 12949-12954.	13.8	38
27	Triazine Based MOFs with Abundant N Sites for Selective Nitrobenzene Detection. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1301-1304.	1.2	13
28	Hydrogen-Bonded Organic Framework Microlasers with Conformation-Induced Color-Tunable Output. ACS Applied Materials & Interfaces, 2021, 13, 28662-28667.	8.0	39
29	Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nature Chemistry, 2021, 13, 933-939.	13.6	235
30	Anhydrous Proton Conduction in Crystalline Porous Materials with a Wide Working Temperature Range. ACS Applied Materials & Interfaces, 2021, 13, 41363-41371.	8.0	15
31	Achieving High Performance Metal–Organic Framework Materials through Pore Engineering. Accounts of Chemical Research, 2021, 54, 3362-3376.	15.6	158
32	Metallic MoS ₂ Nanoflowers Decorated Graphene Nanosheet Catalytically Boosts the Volumetric Capacity and Cycle Life of Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003718.	19.5	105
33	Pore-space-partitioned MOF separator promotes high-sulfur-loading Li–S batteries with intensified rate capability and cycling life. Journal of Materials Chemistry A, 2021, 9, 26929-26938.	10.3	27
34	Microporous polycarbazole frameworks with large conjugated ï€ systems for cyclohexane separation from cyclohexane-containing mixtures. New Journal of Chemistry, 2021, 45, 22437-22443.	2.8	6
35	A microporous metal–organic framework with naphthalene diimide groups for high methane storage. Dalton Transactions, 2020, 49, 3658-3661.	3.3	31
36	MOFs-Derived Nano-CuO Modified Electrode as a Sensor for Determination of Hydrazine Hydrate in Aqueous Medium. Sensors, 2020, 20, 140.	3.8	13

#	Article	IF	CITATIONS
37	Design and applications of water-stable metal-organic frameworks: status and challenges. Coordination Chemistry Reviews, 2020, 423, 213507.	18.8	138
38	Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials. Journal of the American Chemical Society, 2020, 142, 14399-14416.	13.7	444
39	UiOâ€66/GO Composites with Improved Electrochemical Properties for Effective Detection of Phosphite(P(III)) in Phosphate(P(V)) Buffer Solutions. ChemistrySelect, 2020, 5, 10855-10862.	1.5	2
40	Microporous Hydrogen-Bonded Organic Framework for Highly Efficient Turn-Up Fluorescent Sensing of Aniline. Journal of the American Chemical Society, 2020, 142, 12478-12485.	13.7	201
41	Isostructural MOFs with Higher Proton Conductivity for Improved Oxygen Evolution Reaction Performance. ACS Applied Materials & amp; Interfaces, 2020, 12, 16367-16375.	8.0	28
42	Preparation and characterization of metal–organic frameworks and their composite Eu ₂ O ₃ @[Zn ₂ (bdc) ₂ dabco] (ZBDh) <i>via</i> pulsed laser ablation in a flowing liquid. CrystEngComm, 2020, 22, 3188-3197.	2.6	2
43	Metal–Organic Frameworks as a Versatile Platform for Proton Conductors. Advanced Materials, 2020, 32, e1907090.	21.0	255
44	Inserting V-Shaped Bidentate Partition Agent into MIL-88-Type Framework for Acetylene Separation from Acetylene-Containing Mixtures. Crystal Growth and Design, 2020, 20, 2099-2105.	3.0	17
45	Pure Metal–Organic Framework Microlasers with Controlled Cavity Shapes. Nano Letters, 2020, 20, 2020-2025.	9.1	31
46	Solvent-Assisted Modification to Enhance Proton Conductivity and Water Stability in Metal Phosphonates. Inorganic Chemistry, 2020, 59, 3518-3522.	4.0	29
47	A microporous metal-organic framework with basic sites for efficient C2H2/CO2 separation. Journal of Solid State Chemistry, 2020, 284, 121209.	2.9	13
48	Integrating the Pillared-Layer Strategy and Pore-Space Partition Method to Construct Multicomponent MOFs for C ₂ H ₂ /CO ₂ Separation. Journal of the American Chemical Society, 2020, 142, 9258-9266.	13.7	141
49	Metal organic frameworks composite Eu2O3@[Zn2(1,4-ndc)2dabco] synthesized by pulsed laser ablation in flowing liquid and its fluorescent sensing of fatty alcohol with different branch chains. Optical Materials, 2020, 105, 109886.	3.6	4
50	A novel mesoporous hydrogen-bonded organic framework with high porosity and stability. Chemical Communications, 2020, 56, 66-69.	4.1	76
51	Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Science Advances, 2019, 5, eaaw4515.	10.3	90
52	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	19.1	434
53	A metal organic cage with semi-rigid ligand for heterogeneous alcoholysis of epoxides. Inorganic Chemistry Communication, 2019, 108, 107540.	3.9	8
54	Metal–Organic Framework with Rich Accessible Nitrogen Sites for Highly Efficient CO ₂ Capture and Separation. Inorganic Chemistry, 2019, 58, 7754-7759.	4.0	47

#	Article	IF	CITATIONS
55	Enhancement of Intrinsic Proton Conductivity and Aniline Sensitivity by Introducing Dye Molecules into the MOF Channel. ACS Applied Materials & Interfaces, 2019, 11, 16490-16495.	8.0	65
56	Isomorphic MOF-derived porous carbon materials as electrochemical sensor for simultaneous determination of hydroquinone and catechol. Journal of Applied Electrochemistry, 2019, 49, 563-574.	2.9	17
57	Pore Space Partition within a Metal–Organic Framework for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Journal of the American Chemical Society, 2019, 141, 4130-4136.	13.7	338
58	MOF/PAN nanofiber-derived N-doped porous carbon materials with excellent electrochemical activity for the simultaneous determination of catechol and hydroquinone. New Journal of Chemistry, 2019, 43, 3913-3920.	2.8	35
59	Microporous Metal–Organic Framework with Dual Functionalities for Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. ACS Sustainable Chemistry and Engineering, 2019, 7, 4897-4902.	6.7	65
60	Steric-Hindrance-Controlled Laser Switch Based on Pure Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2019, 141, 19959-19963.	13.7	57
61	Metalo Hydrogenâ€Bonded Organic Frameworks (MHOFs) as New Class of Crystalline Materials for Protonic Conduction. Chemistry - A European Journal, 2019, 25, 1691-1695.	3.3	92
62	MOF-derived binary mixed carbon/metal oxide porous materials for constructing simultaneous determination of hydroquinone and catechol sensor. Journal of Solid State Electrochemistry, 2019, 23, 81-89.	2.5	47
63	Sulfonated periodic-mesoporous-organosilicas column for selective separation of C 2 H 2 /CH 4 mixtures. Journal of Solid State Chemistry, 2018, 264, 113-118.	2.9	12
64	Facile synthesis of oxidized activated carbons for high-selectivity and low-enthalpy CO ₂ capture from flue gas. New Journal of Chemistry, 2018, 42, 4495-4500.	2.8	7
65	Microporous metal–organic frameworks with open metal sites and π-Lewis acidic pore surfaces for recovering ethylene from polyethylene off-gas. Journal of Materials Chemistry A, 2018, 6, 20822-20828.	10.3	30
66	Two water-stable lanthanide metal–organic frameworks with oxygen-rich channels for fluorescence sensing of Fe(<scp>iii</scp>) ions in aqueous solution. Dalton Transactions, 2018, 47, 16190-16196.	3.3	101
67	Photochromic naphthalene diimide Cd-MOFs based on different second dicarboxylic acid ligands. CrystEngComm, 2018, 20, 7567-7573.	2.6	43
68	Robustness, Selective Gas Separation, and Nitrobenzene Sensing on Two Isomers of Cadmium Metal–Organic Frameworks Containing Various Metal–O–Metal Chains. Inorganic Chemistry, 2018, 57, 12961-12968.	4.0	87
69	Thermal Conversion of MOF@MOF: Synthesis of an Nâ€Đoped Carbon Material with Excellent ORR Performance. ChemPlusChem, 2018, 83, 1044-1051.	2.8	18
70	An antiferromagnetic metalloring pyrazolate (Pz) framework with [Cu ₁₂ (μ ₂ -OH) ₁₂ (Pz) ₁₂] nodes for separation of C ₂ H ₂ /CH ₄ mixture. Journal of Materials Chemistry A, 2018, 6, 19681-19688.	10.3	21
71	A naphthalene diimide-based MOF with mog net featuring photochromic behaviors and high stability. Inorganic Chemistry Communication, 2018, 93, 105-109.	3.9	19
72	Mixed-Valence Cobalt(II/III) Metal–Organic Framework for Ammonia Sensing with Naked-Eye Color Switching. ACS Applied Materials & Interfaces, 2018, 10, 27465-27471.	8.0	75

#	Article	IF	CITATIONS
73	Loading Acid–Base Pairs into Periodic Mesoporous Organosilica for High Anhydrous Proton Conductivity over a Wide Operating Temperature Window. ACS Applied Energy Materials, 2018, 1, 5068-5074.	5.1	31
74	Additive-Induced Supramolecular Isomerism and Enhancement of Robustness in Co(II)-Based MOFs for Efficiently Trapping Acetylene from Acetylene-Containing Mixtures. ACS Applied Materials & Interfaces, 2018, 10, 30912-30918.	8.0	67
75	Enhanced Intrinsic Proton Conductivity of Metal–Organic Frameworks by Tuning the Degree of Interpenetration. Crystal Growth and Design, 2018, 18, 3724-3728.	3.0	62
76	Reversible Single-Crystal-to-Single-Crystal Transformation and Magnetic Change of Nonporous Copper(II) Complexes by the Chemisorption/Desorption of HCl and H ₂ 0. Inorganic Chemistry, 2017, 56, 1036-1040.	4.0	35
77	Highly Selective Adsorption of C ₂ /C ₁ Mixtures and Solvent-Dependent Thermochromic Properties in Metal–Organic Frameworks Containing Infinite Copper-Halogen Chains. Crystal Growth and Design, 2017, 17, 2081-2089.	3.0	48
78	Rationally tuning host–guest interactions to free hydroxide ions within intertrimerically cuprophilic metal–organic frameworks for high OH ^{â^'} conductivity. Journal of Materials Chemistry A, 2017, 5, 7816-7824.	10.3	71
79	A Cd(II) metal–organic framework based on semi-rigid ligand 3,5-(4-carboxybenzyloxy) benzoic acid with high stability by intramolecular hydrogen-bonding. Inorganic Chemistry Communication, 2017, 80, 49-52.	3.9	11
80	Straightforward Loading of Imidazole Molecules into Metal–Organic Framework for High Proton Conduction. Journal of the American Chemical Society, 2017, 139, 15604-15607.	13.7	290
81	A Facile Approach to Preparing Molecularly Imprinted Chitosan for Detecting 2,4,6-Tribromophenol with a Widely Linear Range. Environments - MDPI, 2017, 4, 30.	3.3	4
82	Direct Evidence of CO ₂ Capture under Low Partial Pressure on a Pillared Metal–Organic Framework with Improved Stabilization through Intramolecular Hydrogen Bonding. ChemPlusChem, 2016, 81, 850-856.	2.8	21
83	Extraordinary Separation of Acetylene ontaining Mixtures with Microporous Metal–Organic Frameworks with Open O Donor Sites and Tunable Robustness through Control of the Helical Chain Secondary Building Units. Chemistry - A European Journal, 2016, 22, 5676-5683.	3.3	113
84	A Hierarchically Porous Metalâ€Organic Framework from Semirigid Ligand for Gas Adsorption. Chinese Journal of Chemistry, 2016, 34, 215-219.	4.9	17
85	High proton conductivity in an unprecedented anionic metalloring organic framework (MROF) containing novel metalloring clusters with the largest diameter. Journal of Materials Chemistry A, 2016, 4, 18742-18746.	10.3	44
86	Microporous Metal–Organic Framework Stabilized by Balanced Multiple Host–Couteranion Hydrogen-Bonding Interactions for High-Density CO ₂ Capture at Ambient Conditions. Inorganic Chemistry, 2016, 55, 292-299.	4.0	82
87	Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C. Journal of Materials Chemistry A, 2016, 4, 4062-4070.	10.3	109
88	Ultrasensitive sensing of tris(2,3-dibromopropyl) isocyanurate based on the synergistic effect of amino and hydroxyl groups of a molecularly imprinted poly(o-aminophenol) film. New Journal of Chemistry, 2016, 40, 1649-1654.	2.8	7
89	40-Fold Enhanced Intrinsic Proton Conductivity in Coordination Polymers with the Same Proton-Conducting Pathway by Tuning Metal Cation Nodes. Inorganic Chemistry, 2016, 55, 983-986.	4.0	68
90	High Anhydrous Proton Conductivity of Imidazole-Loaded Mesoporous Polyimides over a Wide Range from Subzero to Moderate Temperature. Journal of the American Chemical Society, 2015, 137, 913-918.	13.7	238

#	Article	IF	CITATIONS
91	A 3D-diamond-like metal–organic framework: Crystal structure, nonlinear optical effect and high thermal stability. Inorganic Chemistry Communication, 2015, 60, 19-22.	3.9	12
92	Microporous Metal–Organic Framework with Lantern-like Dodecanuclear Metal Coordination Cages as Nodes for Selective Adsorption of C2/C1 Mixtures and Sensing of Nitrobenzene. Crystal Growth and Design, 2015, 15, 3847-3852.	3.0	42
93	Cobalt–citrate framework armored with graphene oxide exhibiting improved thermal stability and selectivity for biogas decarburization. Journal of Materials Chemistry A, 2015, 3, 593-599.	10.3	71
94	Perspective of microporous metal–organic frameworks for CO ₂ capture and separation. Energy and Environmental Science, 2014, 7, 2868.	30.8	693
95	Waterâ€compatible imprinted polymers based on CS <i>@</i> SiO ₂ particles for selective recognition of naringin. Journal of Applied Polymer Science, 2014, 131, .	2.6	12
96	A cationic microporous metal–organic framework for highly selective separation of small hydrocarbons at room temperature. Journal of Materials Chemistry A, 2013, 1, 9916.	10.3	83
97	Metastable Interwoven Mesoporous Metal–Organic Frameworks. Inorganic Chemistry, 2013, 52, 11580-11584.	4.0	60
98	The cooperative utilization of imprinting, electro-spinning and a pore-forming agent to synthesise β-cyclodextrin polymers with enhanced recognition of naringin. RSC Advances, 2013, 3, 25396.	3.6	12
99	A microporous metal–organic framework assembled from an aromatic tetracarboxylate for H2 purification. Journal of Materials Chemistry A, 2013, 1, 2543.	10.3	62
100	A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for highly selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /CO ₂ gas separation at room temperature. Journal of Materials Chemistry A, 2013, 1, 77-81.	10.3	148
101	A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature. Chemical Communications, 2013, 49, 2043.	4.1	61
102	A microporous metal–organic framework with Lewis basic pyridyl sites for selective gas separation of C2H2/CH4 and CO2/CH4 at room temperature. CrystEngComm, 2013, 15, 5232.	2.6	24
103	A robust doubly interpenetrated metal–organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chemical Communications, 2012, 48, 6493.	4.1	224
104	A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas. Chemical Communications, 2012, 48, 10856.	4.1	134
105	Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nature Communications, 2012, 3, 954.	12.8	716
106	Triple Framework Interpenetration and Immobilization of Open Metal Sites within a Microporous Mixed Metal–Organic Framework for Highly Selective Gas Adsorption. Inorganic Chemistry, 2012, 51, 4947-4953.	4.0	83
107	Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M′MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules. Journal of the American Chemical Society, 2012, 134, 8703-8710.	13.7	326
108	A Microporous Metal–Organic Framework for Highly Selective Separation of Acetylene, Ethylene, and Ethane from Methane at Room Temperature. Chemistry - A European Journal, 2012, 18, 613-619.	3.3	204

#	Article	IF	CITATIONS
109	High Separation Capacity and Selectivity of C ₂ Hydrocarbons over Methane within a Microporous Metal–Organic Framework at Room Temperature. Chemistry - A European Journal, 2012, 18, 1901-1904.	3.3	142
110	Microporous metal–organic frameworks for acetylene storage and separation. CrystEngComm, 2011, 13, 5983.	2.6	163
111	Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. Nature Communications, 2011, 2, 204.	12.8	504
112	A New Approach to Construct a Doubly Interpenetrated Microporous Metal–Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. Chemistry - A European Journal, 2011, 17, 7817-7822.	3.3	137
113	Functional Mixed Metal–Organic Frameworks with Metalloligands. Angewandte Chemie - International Edition, 2011, 50, 10510-10520.	13.8	384
114	Inorganic–organic hybrid photochromic materials. Chemical Communications, 2010, 46, 361-376.	4.1	403
115	Open Metal Sites within Isostructural Metal–Organic Frameworks for Differential Recognition of Acetylene and Extraordinarily High Acetylene Storage Capacity at Room Temperature. Angewandte Chemie - International Edition, 2010, 49, 4615-4618.	13.8	344
116	A rod packing microporous metal–organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. Chemical Communications, 2010, 46, 7205.	4.1	239
117	Two Chiral Nonlinear Optical Coordination Networks Based on Interwoven Two-Dimensional Square Grids of Double Helices. Crystal Growth and Design, 2010, 10, 5291-5296.	3.0	44
118	A Robust Highly Interpenetrated Metalâ~'Organic Framework Constructed from Pentanuclear Clusters for Selective Sorption of Gas Molecules. Inorganic Chemistry, 2010, 49, 8444-8448.	4.0	100
119	A Rare Uninodal 9-Connected Metalâ^'Organic Framework with Permanent Porosity. Crystal Growth and Design, 2010, 10, 2372-2375.	3.0	71
120	Photochromic inorganic–organic hybrid: a new approach for switchable photoluminescence in the solid state and partial photochromic phenomenon. Dalton Transactions, 2010, 39, 8688.	3.3	81
121	Selective gas adsorption within a five-connected porous metal–organic framework. Journal of Materials Chemistry, 2010, 20, 3984.	6.7	58
122	A new MOF-505 analog exhibiting high acetylene storage. Chemical Communications, 2009, , 7551.	4.1	231
123	A novel heterometal–organic coordination polymer with chelidamic acid: nonlinear optical and magnetic properties,. CrystEngComm, 2009, 11, 972.	2.6	37
124	Photochromism of a 3D Cd ^{II} Complex with Two Captured Ligand Isomers Generated In Situ from the Same Precursor. Angewandte Chemie - International Edition, 2008, 47, 3565-3567.	13.8	121
125	Wavelengthâ€Dependent Photochromic Inorganic–Organic Hybrid Based on a 3D Iodoplumbate Openâ€Framework Material. Angewandte Chemie - International Edition, 2008, 47, 4149-4152.	13.8	191
126	A new approach to Hg1â^'XCdxTe: Syntheses, crystal and band structures, and optical properties. Solid State Sciences, 2008, 10, 69-73.	3.2	4

#	Article	IF	CITATIONS
127	Synthesis, Crystal and Band Structures, and Properties of a New Mixed Three-Dimensional Framework Metal Pnictidehalide Semiconductor, (Hg6Sb4)(Cdl6). Inorganic Chemistry, 2007, 46, 7321-7325.	4.0	19
128	Photochromism of a Methyl Viologen Bismuth(III) Chloride: Structural Variation Before and After UV Irradiation. Angewandte Chemie - International Edition, 2007, 46, 3249-3251.	13.8	331
129	Tris(1,2-ethanediamine-κ2N,N′)cobalt(II) triiodide iodide. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m3206-m3206.	0.2	1
130	Two novel halogeno(cyano)argentates with efficient luminescence. Dalton Transactions, 2006, , 884-886.	3.3	24
131	Synthesis, Crystal and Band Structures, and Optical Properties of a New Quaternary Metal Pnictidehalide:Â (Hg2Cd2As2Br)Br. Inorganic Chemistry, 2006, 45, 6365-6369.	4.0	16
132	A New Type of Hybrid Magnetic Semiconductor Based upon Polymeric Iodoplumbate and Metalâ^'Organic Complexes as Templates. Inorganic Chemistry, 2006, 45, 1972-1977.	4.0	81
133	[(H2en)7(C2O4)2] n (Pb4I18) n ·4nH2O, a New Type of Perovskite Co-templated by Both Organic Cations and Anions. Inorganic Chemistry, 2006, 45, 10028-10030.	4.0	67
134	Two metal chalcogenides, Hg2Te2X2 (XBr, I): 3-D framework constructed from novel left-handed helices. Journal of Solid State Chemistry, 2006, 179, 3394-3399.	2.9	8
135	Three New Cytotoxicent-Kaurane Diterpenoids fromIsodon weisiensis C.â€Y.Wu. Helvetica Chimica Acta, 2005, 88, 2502-2507.	1.6	7
136	A new cobalt(III) ethylenediamine complex with mixed halide counter-anions, [Co(en)3](Cl)(I)2·H2O. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m89-m91.	0.2	2
137	Incorporating Transition Metal Complexes into Tetrathioarsenates(V):Â Syntheses, Structures, and Properties of Two Unprecedented [Mn(dien)2]n[Mn(dien)AsS4]2n·4nH2O and [Mn(en)3]2[Mn(en)2AsS4][As3S6]. Inorganic Chemistry, 2005, 44, 184-186.	4.0	83