Luping Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7786286/publications.pdf

Version: 2024-02-01

71102 46799 11,428 97 41 89 citations h-index g-index papers 99 99 99 10662 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3, 649-653.	31.4	3,015
2	Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chemical Reviews, 2015, 115, 12666-12731.	47.7	2,308
3	Ternary blend polymer solar cells with enhanced power conversion efficiency. Nature Photonics, 2014, 8, 716-722.	31.4	601
4	High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nature Communications, 2015, 6, 7327.	12.8	422
5	Covalently Bound Clusters of Alpha-Substituted PDI—Rival Electron Acceptors to Fullerene for Organic Solar Cells. Journal of the American Chemical Society, 2016, 138, 7248-7251.	13.7	377
6	Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production. Journal of the American Chemical Society, 2016, 138, 7681-7686.	13.7	364
7	How to design low bandgap polymers for highly efficient organic solar cells. Materials Today, 2014, 17, 11-15.	14.2	209
8	Overcoming efficiency challenges in organic solar cells: rational development of conjugated polymers. Energy and Environmental Science, 2012, 5, 8158.	30.8	189
9	Electron Acceptors Based on α-Substituted Perylene Diimide (PDI) for Organic Solar Cells. Chemistry of Materials, 2016, 28, 1139-1146.	6.7	187
10	Are we there yet? Design of better conjugated polymers for polymer solar cells. Journal of Materials Chemistry, 2011, 21, 18934.	6.7	156
11	Transport Properties of a Single-Molecule Diode. ACS Nano, 2012, 6, 4931-4939.	14.6	143
12	Mediating Solar Cell Performance by Controlling the Internal Dipole Change in Organic Photovoltaic Polymers. Macromolecules, 2012, 45, 6390-6395.	4.8	138
13	Photovoltaic Function and Exciton/Charge Transfer Dynamics in a Highly Efficient Semiconducting Copolymer. Advanced Functional Materials, 2014, 24, 10-26.	14.9	134
14	Donor–Acceptor Porous Conjugated Polymers for Photocatalytic Hydrogen Production: The Importance of Acceptor Comonomer. Macromolecules, 2016, 49, 6903-6909.	4.8	129
15	Ladder polymers: recent developments in syntheses, characterization, and potential applications as electronic and optical materials. Chemistry of Materials, 1990, 2, 649-659.	6.7	128
16	Synthesis of Amphiphilic Conjugated Diblock Oligomers as Molecular Diodes. Angewandte Chemie - International Edition, 2002, 41, 3598-3601.	13.8	127
17	Polyselenopheno[3,4- <i>b</i>)]selenophene for Highly Efficient Bulk Heterojunction Solar Cells. ACS Macro Letters, 2012, 1, 361-365.	4.8	120
18	Development of Semiconducting Polymers for Solar Energy Harvesting. Polymer Reviews, 2010, 50, 454-473.	10.9	110

#	Article	IF	CITATIONS
19	Multifunctional Polymers Exhibiting Photorefractive Effects. Accounts of Chemical Research, 1996, 29, 13-21.	15.6	108
20	Nanoporous Porphyrin Polymers for Gas Storage and Separation. Macromolecules, 2012, 45, 7413-7419.	4.8	108
21	Synthesis and Search for Design Principles of New Electron Accepting Polymers for All-Polymer Solar Cells. Chemistry of Materials, 2014, 26, 3450-3459.	6.7	100
22	Exploration of Syntheses and Functions of Higher Ladder-type π-Conjugated Heteroacenes. CheM, 2018, 4, 2538-2570.	11.7	85
23	Nanoporous Polyporphyrin as Adsorbent for Hydrogen Storage. Macromolecules, 2010, 43, 3325-3330.	4.8	84
24	Mechanistic Studies of Effect of Dispersity on the Photovoltaic Performance of PTB7 Polymer Solar Cells. Chemistry of Materials, 2015, 27, 537-543.	6.7	84
25	Synthesis of Ladder-Type Thienoacenes and Their Electronic and Optical Properties. Journal of the American Chemical Society, 2016, 138, 868-875.	13.7	84
26	Propeller-Shaped Acceptors for High-Performance Non-Fullerene Solar Cells: Importance of the Rigidity of Molecular Geometry. Chemistry of Materials, 2017, 29, 1127-1133.	6.7	83
27	Photocatalysts Based on Cobalt-Chelating Conjugated Polymers for Hydrogen Evolution from Water. Chemistry of Materials, 2016, 28, 5394-5399.	6.7	81
28	Photophysical and Morphological Implications of Single-Strand Conjugated Polymer Folding in Solution. Chemistry of Materials, 2016, 28, 2814-2822.	6.7	76
29	Exceptional Single-Molecule Transport Properties of Ladder-Type Heteroacene Molecular Wires. Journal of the American Chemical Society, 2016, 138, 10630-10635.	13.7	76
30	Synthesis and Characterization of Diblock Copolymers Containing Oligothiophenes with Defined Regiospecificity and Molecular Weights. Macromolecules, 1996, 29, 7329-7334.	4.8	75
31	Conjugated block copolymers and co-oligomers: from supramolecular assembly to molecular electronics. Journal of Materials Chemistry, 2007, 17, 2183.	6.7	75
32	Conjugated Polymers Containing Mixed-Ligand Ruthenium(II) Complexes. Synthesis, Characterization, and Investigation of Photoconductive Properties. Journal of the American Chemical Society, 2000, 122, 11806-11811.	13.7	69
33	Beyond Molecular Wires: Design Molecular Electronic Functions Based on Dipolar Effect. Accounts of Chemical Research, 2016, 49, 1852-1863.	15.6	60
34	Chemoselective Immobilization of Gold Nanoparticles onto Self-Assembled Monolayers. Langmuir, 2002, 18, 311-313.	3.5	59
35	Molecular Rectification Tuned by Through-Space Gating Effect. Nano Letters, 2017, 17, 308-312.	9.1	56
36	Two Photon Absorption Study of Low-Bandgap, Fully Conjugated Perylene Diimide-Thienoacene-Perylene Diimide Ladder-Type Molecules. Chemistry of Materials, 2017, 29, 6726-6732.	6.7	55

#	Article	IF	CITATIONS
37	Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie - International Edition, 2018, 57, 6442-6448.	13.8	54
38	Charge Transfer and Aggregation Effects on the Performance of Planar vs Twisted Nonfullerene Acceptor Isomers for Organic Solar Cells. Chemistry of Materials, 2018, 30, 4263-4276.	6.7	49
39	Optical, Electrical, and Magnetic Studies of Organic Solar Cells Based on Low Bandgap Copolymer with Spin $\hat{A}\frac{1}{2}$ Radical Additives. Advanced Functional Materials, 2015, 25, 1895-1902.	14.9	45
40	Proton-triggered switch based on a molecular transistor with edge-on gate. Chemical Science, 2016, 7, 3137-3141.	7.4	45
41	Edge-on Gating Effect in Molecular Wires. Nano Letters, 2015, 15, 958-962.	9.1	43
42	A Singleâ€Molecular AND Gate Operated with Two Orthogonal Switching Mechanisms. Advanced Materials, 2017, 29, 1701248.	21.0	41
43	Roles of Quinoidal Character and Regioregularity in Determining the Optoelectronic and Photovoltaic Properties of Conjugated Copolymers. Macromolecules, 2014, 47, 6252-6259.	4.8	40
44	Synthesis and Structure/Property Correlation of Fully Functionalized Photorefractive Polymers. Macromolecules, 2002, 35, 4636-4645.	4.8	37
45	Conjugated, Liquid Crystalline Polymers. Angewandte Chemie International Edition in English, 1993, 32, 1345-1347.	4.4	35
46	Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%. Chemical Science, 2015, 6, 4860-4866.	7.4	35
47	Effect of Acceptor Strength on Optical and Electronic Properties in Conjugated Polymers for Solar Applications. Journal of the American Chemical Society, 2015, 137, 5759-5769.	13.7	35
48	Tuning the Polarizability in Donor Polymers with a Thiophenesaccharin Unit for Organic Photovoltaic Applications. Advanced Functional Materials, 2014, 24, 3432-3437.	14.9	34
49	Effects of Exciton Polarity in Charge-Transfer Polymer/PCBM Bulk Heterojunction Films. Journal of Physical Chemistry Letters, 2014, 5, 1856-1863.	4.6	33
50	Design of High-Performance Organic Light-Emitting Transistors. ACS Omega, 2020, 5, 68-74.	3.5	32
51	Hybridized approach to new polymers exhibiting large photorefractivity. Applied Physics Letters, 1996, 69, 4002-4004.	3.3	31
52	Efficient molecular photorefractive materials based on methine dyes. Applied Physics Letters, 2001, 78, 700-702.	3.3	31
53	Synergy between Photoluminescence and Charge Transport Achieved by Finely Tuning Polymeric Backbones for Efficient Light-Emitting Transistor. Journal of the American Chemical Society, 2021, 143, 5239-5246.	13.7	31
54	Conjugated photorefractive polymer. Applied Physics Letters, 1994, 64, 2489-2491.	3.3	29

#	Article	IF	Citations
55	Incremental optimization in donor polymers for bulk heterojunction organic solar cells exhibiting high performance. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1057-1070.	2.1	29
56	Morphological characterization of fullerene and fullerene-free organic photovoltaics by combined real and reciprocal space techniques. Journal of Materials Research, 2017, 32, 1921-1934.	2.6	28
57	Enhancement in Open-Circuit Voltage in Organic Solar Cells by Using Ladder-Type Nonfullerene Acceptors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13528-13533.	8.0	28
58	An Electromechanical Approach to Understanding Binding Configurations in Single-Molecule Devices. Nano Letters, 2018, 18, 6638-6644.	9.1	26
59	Structure and dynamics correlations of photoinduced charge separation in rigid conjugated linear donor–acceptor dyads towards photovoltaic applications. New Journal of Chemistry, 2009, 33, 1497.	2.8	25
60	A Multifunctional Photorefractive Material Showing High Optical Gain and Diffraction Efficiency. Advanced Materials, 1998, 10, 927-931.	21.0	24
61	Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells. ACS Applied Materials & Delocation (10043-10052).	8.0	24
62	Investigations of Thienoacene Molecules for Classical and Entangled Two-Photon Absorption. Journal of Physical Chemistry A, 2018, 122, 8167-8182.	2.5	24
63	Novel secondâ€order nonlinear optical, aromatic, and aliphatic polyimides exhibiting highâ€ŧemperature stability. Applied Physics Letters, 1995, 66, 1050-1052.	3.3	22
64	Solution Phase Exciton Diffusion Dynamics of a Charge-Transfer Copolymer PTB7 and a Homopolymer P3HT . Journal of Physical Chemistry B, 2015, 119, 7447-7456.	2.6	22
65	Synthesis of Amphiphilic Conjugated Diblock Oligomers as Molecular Diodes. Angewandte Chemie, 2002, 114, 3750-3753.	2.0	20
66	BODIPY-Containing Polymers with Ultralow Band Gaps and Ambipolar Charge Mobilities. Macromolecules, 2020, 53, 2014-2020.	4.8	18
67	Lessons learned from research on photorefractive polymers and molecular materials. Journal of Polymer Science Part A, 2001, 39, 2557-2564.	2.3	17
68	Highly Emissive Semi-Ladder-Type Copolymers, Aggregation State, and Solution-Processed Organic Light-Emitting Transistor. Chemistry of Materials, 2020, 32, 4672-4680.	6.7	17
69	High Performance Ternary Organic Solar Cells due to Favored Interfacial Connection by a Non-Fullerene Electron Acceptor with Cross-Like Molecular Geometry. Journal of Physical Chemistry C, 2018, 122, 11305-11311.	3.1	16
70	Fine-tuning photorefractive properties of monolithic molecular materials. Applied Physics Letters, 2003, 82, 3385-3387.	3.3	14
71	Intramolecular Hydrogen Bonding Assisted Charge Transport through Single Rectifying Molecule. Langmuir, 2011, 27, 2084-2087.	3.5	14
72	Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells. Microscopy and Microanalysis, 2014, 20, 1507-1513.	0.4	11

#	Article	IF	Citations
73	Controlled Self-Assembly of Cyclophane Amphiphiles: From 1D Nanofibers to Ultrathin 2D Topological Structures. Macromolecules, 2016, 49, 5172-5178.	4.8	11
74	Photoinduced cationic polycondensation in solid state towards ultralow band gap conjugated polymers. Journal of Materials Chemistry C, 2020, 8, 7026-7033.	5.5	10
75	The Role of the Core Attachment Positioning in Triggering Intramolecular Singlet Exciton Fission in Perylene Diimide Tetramers. Journal of Physical Chemistry B, 2021, 125, 5114-5131.	2.6	9
76	Investigation of the Liquid Crystallineâ°'Isotropic Phase Transition in Oligo(phenylenevinylene) with Alkyl Side Chains. Macromolecules, 1997, 30, 6274-6279.	4.8	7
77	Dipolar and electronic effects on charge transport through single transition metal complexes. Science China Chemistry, 2011, 54, 410-414.	8.2	7
78	Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie, 2018, 130, 6552-6558.	2.0	7
79	Molecular Control of Charge Carrier and Seebeck Coefficient in Hybrid Two-Dimensional Nanoparticle Superlattices. Journal of Physical Chemistry C, 2020, 124, 17-24.	3.1	7
80	Effect of a local electric field on photogeneration efficiency in a photorefractive polymer. Applied Physics Letters, 1998, 73, 2546-2548.	3.3	6
81	Inhomogeneity of the Ultrafast Excited State Dynamics in Organic Photovoltaic Materials Measured at Nanoscale. Journal of Physical Chemistry C, 2018, 122, 22201-22209.	3.1	6
82	Photophysical implications of ring fusion, linker length, and twisting angle in a series of perylenediimide–thienoacene dimers. Chemical Science, 2020, 11, 7133-7143.	7.4	6
83	Length-dependent self-assembly of oligothiophene derivatives in thin films. Journal of Materials Research, 2011, 26, 296-305.	2.6	4
84	Finely Designed P3HT-Based Fully Conjugated Graft Polymer: Optical Measurements, Morphology, and the Faraday Effect. ACS Applied Materials & (2020, 12, 30856-30861).	8.0	3
85	Rational Designs of Multifunctional Polymers-Conjugated Photorefractive Polymers. Materials Research Society Symposia Proceedings, 1993, 328, 63.	0.1	2
86	PICOSECOND OPTICAL LIMITING PERFORMANCE OF A NOVEL PPV-ZnPc CONJUGATED POLYMER. Journal of Nonlinear Optical Physics and Materials, 2000, 09, 289-296.	1.8	2
87	Molecular Design towards Controlling Charge Transport. Chemistry - A European Journal, 2018, 24, 17180-17187.	3.3	2
88	Donor–Acceptor Conjugated Copolymers Containing Transition-Metal Complex: Intrachain Magnetic Exchange Interactions and Magneto-Optical Activity. Chemistry of Materials, 0, , .	6.7	2
89	Novel Photorefractive Materials Based on Multifunctional Organic Glasses. ACS Symposium Series, 1999, , 226-236.	0.5	1
90	Frontispiece: Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie - International Edition, 2018, 57, .	13.8	1

Luping Yu

#	Article	IF	CITATIONS
91	Synthesis of Thioester End-Functionalized Poly($\hat{l}\mu$ -caprolactone) and Its Application in Chemoselective Ligation. ACS Symposium Series, 1998, , 92-104.	0.5	0
92	Progress in Fully Functionalized Photorefractive Materials. Materials Research Society Symposia Proceedings, 1999, 597, 203.	0.1	0
93	Structural Evolution and Alignment of Cylinder-Forming PS-b-PEP Thin Films in Confinement Studied by Time-Lapse Atomic Force Microscopy. Materials Research Society Symposia Proceedings, 2004, 854, U11.17.1.	0.1	0
94	Disposable organic fluorescence biosensor for water pollution monitoring Materials Research Society Symposia Proceedings, 2011, 1358, 50301.	0.1	0
95	Organic Photovoltaics: Photovoltaic Function and Exciton/Charge Transfer Dynamics in a Highly Efficient Semiconducting Copolymer (Adv. Funct. Mater. 1/2014). Advanced Functional Materials, 2014, 24, 2-2.	14.9	0
96	Frontispiz: Synthesis of Alternating Donor–Acceptor Ladderâ€Type Molecules and Investigation of Their Multiple Chargeâ€Transfer Pathways. Angewandte Chemie, 2018, 130, .	2.0	0
97	Frontispiece: Molecular Design towards Controlling Charge Transport. Chemistry - A European Journal, 2018, 24, .	3.3	O