Jack T Rogers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7785381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron-Export Ferroxidase Activity of β-Amyloid Precursor Protein Is Inhibited by Zinc in Alzheimer's Disease. Cell, 2010, 142, 857-867.	28.9	597
2	An Iron-responsive Element Type II in the 5′-Untranslated Region of the Alzheimer's Amyloid Precursor Protein Transcript. Journal of Biological Chemistry, 2002, 277, 45518-45528.	3.4	474
3	Redoxâ€Active Metals, Oxidative Stress, and Alzheimer's Disease Pathology. Annals of the New York Academy of Sciences, 2004, 1012, 153-163.	3.8	381
4	N-Methyl D-Aspartate (NMDA) Receptor Antagonists and Memantine Treatment for Alzheimer's Disease, Vascular Dementia and Parkinson's Disease. Current Alzheimer Research, 2012, 9, 746-758.	1.4	277
5	Iron-dependent regulation of the divalent metal ion transporter. FEBS Letters, 2001, 509, 309-316.	2.8	269
6	Translation of the Alzheimer Amyloid Precursor Protein mRNA Is Up-regulated by Interleukin-1 through 5′-Untranslated Region Sequences. Journal of Biological Chemistry, 1999, 274, 6421-6431.	3.4	256
7	Iron-regulatory proteins, iron-responsive elements and ferritin mRNA translation. International Journal of Biochemistry and Cell Biology, 1999, 31, 1139-1152.	2.8	198
8	Interleukin (IL) 1β Induction of IL-6 Is Mediated by a Novel Phosphatidylinositol 3-Kinase-dependent AKT/lκB Kinase α Pathway Targeting Activator Protein-1. Journal of Biological Chemistry, 2008, 283, 25900-25912.	3.4	189
9	MicroRNAs can regulate human APP levels. Molecular Neurodegeneration, 2008, 3, 10.	10.8	164
10	Metal and Inflammatory Targets for Alzheimers Disease. Current Drug Targets, 2004, 5, 535-551.	2.1	152
11	Selective Translational Control of the Alzheimer Amyloid Precursor Protein Transcript by Iron Regulatory Protein-1. Journal of Biological Chemistry, 2010, 285, 31217-31232.	3.4	144
12	Brain Iron Metabolism Dysfunction in Parkinson's Disease. Molecular Neurobiology, 2017, 54, 3078-3101.	4.0	138
13	Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer's amyloidogenesis. Experimental Gerontology, 2004, 39, 1641-1649.	2.8	131
14	Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer's disease. Biochemical Society Transactions, 2008, 36, 1282-1287.	3.4	123
15	Metal exposure and Alzheimer's pathogenesis. Journal of Structural Biology, 2006, 155, 45-51.	2.8	121
16	Thyroid Hormone Modulates the Interaction between Iron Regulatory Proteins and the Ferritin mRNA Iron-responsive Element. Journal of Biological Chemistry, 1996, 271, 12017-12023.	3.4	118
17	Parkinson's Disease Iron Deposition Caused by Nitric Oxide-Induced Loss of β-Amyloid Precursor Protein. Journal of Neuroscience, 2015, 35, 3591-3597	3.6	109
18	Perturbed Iron Distribution in Alzheimer's Disease Serum, Cerebrospinal Fluid, and Selected Brain Regions: A Systematic Review and Meta-Analysis. Journal of Alzheimer's Disease, 2014, 42, 679-690.	2.6	108

#	Article	IF	CITATIONS
19	High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer's disease. Scientific Reports, 2016, 6, 24873.	3.3	103
20	Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5′-untranslated region: Implications in Alzheimer's disease. Molecular Psychiatry, 2019, 24, 345-363.	7.9	103
21	A review of independent component analysis application to microarray gene expression data. BioTechniques, 2008, 45, 501-520.	1.8	92
22	New Therapeutic Strategies and Drug Candidates for Neurodegenerative Diseases: p53 and TNF-Â Inhibitors, and GLP-1 Receptor Agonists. Annals of the New York Academy of Sciences, 2004, 1035, 290-315.	3.8	91
23	Amyloid precursor protein and alpha synuclein translation, implications for iron and inflammation in neurodegenerative diseases. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 615-628.	2.4	87
24	Hypoxia Alters Iron-regulatory Protein-1 Binding Capacity and Modulates Cellular Iron Homeostasis in Human Hepatoma and Erythroleukemia Cells. Journal of Biological Chemistry, 1999, 274, 4467-4473.	3.4	83
25	Physiological and Pathological Role of Alpha-synuclein in Parkinson's Disease Through Iron Mediated Oxidative Stress; The Role of a Putative Iron-responsive Element. International Journal of Molecular Sciences, 2009, 10, 1226-1260.	4.1	75
26	S-Adenosyl Methionine and Transmethylation Pathways in Neuropsychiatric Diseases Throughout Life. Neurotherapeutics, 2018, 15, 156-175.	4.4	68
27	Interleukin-11̂± stimulates non-amyloidogenic pathway by α-secretase (ADAM-10 and ADAM-17) cleavage of APP in human astrocytic cells involving p38 MAP kinase. Journal of Neuroscience Research, 2006, 84, 106-118.	2.9	61
28	Alzheimer's disease drug discovery targeted to the APP mRNA 5′Untranslated region. Journal of Molecular Neuroscience, 2002, 19, 77-82.	2.3	58
29	Mechanisms of neuroprotection by hemopexin: modeling the control of heme and iron homeostasis in brain neurons in inflammatory states. Journal of Neurochemistry, 2013, 125, 89-101.	3.9	57
30	The alpha-synuclein 5′untranslated region targeted translation blockers: anti-alpha synuclein efficacy of cardiac glycosides and Posiphen. Journal of Neural Transmission, 2011, 118, 493-507.	2.8	56
31	Alzheimer's disease therapeutics targeted to the control of amyloid precursor protein translation: Maintenance of brain iron homeostasis. Biochemical Pharmacology, 2014, 88, 486-494.	4.4	55
32	Ascorbic Acid Enhances Iron-induced Ferritin Translation in Human Leukemia and Hepatoma Cells. Journal of Biological Chemistry, 1995, 270, 2846-2852.	3.4	54
33	Drug Discovery Targeted to the Alzheimer's APP mRNA 5'-Untranslated Region: The Action of Paroxetine and Dimercaptopropanol. Journal of Molecular Neuroscience, 2003, 20, 267-276.	2.3	54
34	The Integrated Role of Desferrioxamine and Phenserine Targeted to an Iron-Responsive Element in the APP-mRNA 5'-Untranslated Region. Annals of the New York Academy of Sciences, 2004, 1035, 34-48.	3.8	52
35	Manganese causes neurotoxic iron accumulation via translational repression of amyloid precursor protein and Hâ€Ferritin. Journal of Neurochemistry, 2018, 147, 831-848.	3.9	52
36	Novel drug targets based on metallobiology of Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2010, 14, 1177-1197.	3.4	49

#	Article	IF	CITATIONS
37	Serum Ferritin and Metal Levels as Risk Factors for Amyotrophic Lateral Sclerosis. The Open Neurology Journal, 2008, 2, 51-54.	0.4	49
38	RNA Therapeutics Directed to the Non Coding Regions of APP mRNA, In Vivo Anti-Amyloid Efficacy of Paroxetine, Erythromycin, and N-acetyl cysteine. Current Alzheimer Research, 2006, 3, 221-227.	1.4	48
39	Assessments of plasma ghrelin levels in the early stages of parkinson's disease. Movement Disorders, 2017, 32, 1487-1491.	3.9	47
40	Biomarkers of environmental manganese exposure and associations with childhood neurodevelopment: a systematic review and meta-analysis. Environmental Health, 2020, 19, 104.	4.0	47
41	Novel 5′ Untranslated Region Directed Blockers of Iron-Regulatory Protein-1 Dependent Amyloid Precursor Protein Translation: Implications for Down Syndrome and Alzheimer's Disease. PLoS ONE, 2013, 8, e65978.	2.5	44
42	FDA-Preapproved Drugs Targeted to the Translational Regulation and Processing of the Amyloid Precursor Protein. Journal of Molecular Neuroscience, 2004, 24, 129-136.	2.3	43
43	The Role of Cytokines in the Regulation of Ferritin Expression. Advances in Experimental Medicine and Biology, 1994, 356, 127-132.	1.6	43
44	Dysregulation of Neuronal Iron Homeostasis as an Alternative Unifying Effect of Mutations Causing Familial Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 533.	2.8	41
45	Thyrotropin-releasing Hormone and Epidermal Growth Factor Regulate Iron-regulatory Protein Binding in Pituitary Cells via Protein Kinase C-dependent and -independent Signaling Pathways. Journal of Biological Chemistry, 2000, 275, 31609-31615.	3.4	38
46	Pilot Study of the Reducing Effect on Amyloidosis In Vivo by Three FDA Pre-Approved Drugs Via the Alzheimers APP 5Untranslated Region. Current Alzheimer Research, 2005, 2, 249-254.	1.4	38
47	A High-Throughput Drug Screen Targeted to the 5'Untranslated Region of Alzheimer Amyloid Precursor Protein mRNA. Journal of Biomolecular Screening, 2006, 11, 469-480.	2.6	37
48	The Anticholinesterase Phenserine and Its Enantiomer Posiphen as 5 [′] Untranslated-Region-Directed Translation Blockers of the Parkinson's Alpha Synuclein Expression. Parkinson's Disease, 2012, 2012, 1-13.	1.1	37
49	A role for amyloid precursor protein translation to restore iron homeostasis and ameliorate lead (Pb) neurotoxicity. Journal of Neurochemistry, 2016, 138, 479-494.	3.9	33
50	Taking Down the Unindicted Co-Conspirators of Amyloid β-Peptidemediated Neuronal Death: Shared Gene Regulation of BACE1 and APP Genes Interacting with CREB, Fe65 and YY1 Transcription Factors. Current Alzheimer Research, 2006, 3, 475-483.	1.4	32
51	Functional characterization of three singleâ€nucleotide polymorphisms present in the human <i>APOE</i> promoter sequence: Differential effects in neuronal cells and on DNA–protein interactions. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 185-201	1.7	32
52	The Acute Box cis-Element in Human Heavy Ferritin mRNA 5′-Untranslated Region Is a Unique Translation Enhancer That Binds Poly(C)-binding Proteins. Journal of Biological Chemistry, 2005, 280, 30032-30045.	3.4	29
53	Differential cytotoxicity of metal oxide nanoparticles. Journal of Experimental Nanoscience, 2008, 3, 321-328.	2.4	29
54	The Ferritin Genes: Structure, Expression, and Regulation. Annals of the New York Academy of Sciences, 1988, 526, 113-123.	3.8	26

#	Article	IF	CITATIONS
55	Flavanols, mild cognitive impairment, and Alzheimer's dementia. International Journal of Clinical and Experimental Medicine, 2008, 1, 181-91.	1.3	25
56	Tat-haFGF 14–154 Upregulates ADAM10 to Attenuate the Alzheimer Phenotype of APP/PS1 Mice through the PI3K-CREB-IRE1α/XBP1 Pathway. Molecular Therapy - Nucleic Acids, 2017, 7, 439-452.	5.1	24
57	Synthesis of the Alzheimer Drug Posiphen into its Primary Metabolic Products (+)-N1-norPosiphen, (+)-N8-norPosiphen and (+)-N1, N8-bisnorPosiphen, their Inhibition of Amyloid Precursor Protein, α -Synuclein Synthesis, Interleukin-1β Release, and Cholinergic Action Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry. 2013. 12. 117-128.	1.1	23
58	Iron-responsive-like elements and neurodegenerative ferroptosis. Learning and Memory, 2020, 27, 395-413.	1.3	21
59	Melatonin, Metals, and Gene Expression: Implications in Aging and Neurodegenerative Disorders. Annals of the New York Academy of Sciences, 2004, 1035, 216-230.	3.8	20
60	The Role of Phosphoinositide 3-Kinase Signaling in Intestinal Inflammation. Journal of Signal Transduction, 2012, 2012, 1-13.	2.0	20
61	Differential Expression of the Activator Protein 1 Transcription Factor Regulates Interleukin-1ß Induction of Interleukin 6 in the Developing Enterocyte. PLoS ONE, 2016, 11, e0145184.	2.5	18
62	HDAC1 Governs Iron Homeostasis Independent of Histone Deacetylation in Iron-Overload Murine Models. Antioxidants and Redox Signaling, 2018, 28, 1224-1237.	5.4	17
63	Targeting the Iron-Response Elements of the mRNAs for the Alzheimer's Amyloid Precursor Protein and Ferritin to Treat Acute Lead and Manganese Neurotoxicity. International Journal of Molecular Sciences, 2019, 20, 994.	4.1	17
64	A Special Local Clustering Algorithm for Identifying the Genes Associated With Alzheimer's Disease. IEEE Transactions on Nanobioscience, 2010, 9, 44-50.	3.3	16
65	Exposure to CuO Nanoparticles Mediates NFκB Activation and Enhances Amyloid Precursor Protein Expression. Biomedicines, 2020, 8, 45.	3.2	12
66	Alzheimer's Disease and Its Potential Alternative Therapeutics. , 2019, 9, .		12
67	Translational inhibition of α-synuclein by Posiphen normalizes distal colon motility in transgenic Parkinson mice. American Journal of Neurodegenerative Disease, 2019, 8, 1-15.	0.1	11
68	Could Aß and AßPP be Antioxidants?. Journal of Alzheimer's Disease, 2000, 2, 83-84.	2.6	9
69	How autism and Alzheimer's disease are TrAPPed. Molecular Psychiatry, 2021, 26, 26-29.	7.9	9
70	The 5'-Untranslated Region of the C9orf72 mRNA Exhibits a Phylogenetic Alignment to the Cis-Aconitase Iron-Responsive Element; Novel Therapies for Amytrophic Lateral Sclerosis. Neuroscience and Medicine, 2016, 07, 15-26.	0.2	8
71	Alpha-Synuclein in Alcohol Use Disorder, Connections with Parkinson's Disease and Potential Therapeutic Role of 5' Untranslated Region-Directed Small Molecules. Biomolecules, 2020, 10, 1465.	4.0	7
72	PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer's amyloid-β precursor protein via a tissue-specific proximal regulatory element (PRE). BMC Genomics, 2013, 14, 68.	2.8	6

#	Article	IF	CITATIONS
73	Assessment of gene order computing methods for Alzheimer's disease. BMC Medical Genomics, 2013, 6, S8.	1.5	6
74	A Preliminary Study of Cu Exposure Effects upon Alzheimer's Amyloid Pathology. Biomolecules, 2020, 10, 408.	4.0	5
75	S-adenosyl-l-methionine (SAMe), cannabidiol (CBD), and kratom in psychiatric disorders: Clinical and mechanistic considerations. Brain, Behavior, and Immunity, 2020, 85, 152-161.	4.1	4
76	Posiphen Reduces the Levels of Huntingtin Protein through Translation Suppression. Pharmaceutics, 2021, 13, 2109.	4.5	3
77	Amyloid Precursor Protein and Ferritin Translation: Implications for Metals and Alzheimer's Disease Therapeutics. ACS Symposium Series, 2005, , 215-251.	0.5	2
78	Dissociation Between the Potent β-Amyloid Protein Pathway Inhibition and Cholinergic Actions of the Alzheimer Drug Candidates Phenserine and Cymserine. , 2008, , 445-462.		2
79	Role of Nitric Oxide in Neurodegeneration and Vulnerability of Neuronal Cells to Nitric Oxide Metabolites and Reactive Oxygen Species. , 2010, , 399-415.		1
80	Anti-Idiotypic Sera Against Monoclonal Anti-Porcine Growth Hormone Antibodies: Production in Rabbits and Characterization of Specificity. Journal of Immunoassay, 1999, 20, 45-55.	0.3	0
81	Importance of Copper and Zinc in Alzheimer's Disease and the Biology of Amyloid-β Protein and Amyloid-β Protein Precursor. , 2003, , 245-261.		0