
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7785056/publications.pdf Version: 2024-02-01



KENII MIIIDA

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Modification of tomato breeding traits and plant hormone signaling by Target-AID, the genome-editing system inducing efficient nucleotide substitution. Horticulture Research, 2022, 9, .                              | 6.3 | 11        |
| 2  | Functional Characterization of Tomato Phytochrome A and B1B2 Mutants in Response to Heat Stress.<br>International Journal of Molecular Sciences, 2022, 23, 1681.                                                       | 4.1 | 11        |
| 3  | Nitrate transport via NRT2.1 mediates NIN-LIKE PROTEIN-dependent suppression of root nodulation in <i>Lotus japonicus</i> . Plant Cell, 2022, 34, 1844-1862.                                                           | 6.6 | 21        |
| 4  | Quantitative evaluation of glycanâ€binding specificity of recombinant concanavalin A produced in<br>lettuce ( <i>Lactuca sativa</i> ). Biotechnology and Bioengineering, 2022, 119, 1781-1791.                         | 3.3 | 2         |
| 5  | CRISPR/Cas9 Technique for Temperature, Drought, and Salinity Stress Responses. Current Issues in Molecular Biology, 2022, 44, 2664-2682.                                                                               | 2.4 | 20        |
| 6  | Gene expression of PLAT and ATS3 proteins increases plant resistance to insects. Planta, 2021, 253, 37.                                                                                                                | 3.2 | 5         |
| 7  | Prevention of necrosis caused by transient expression in <i>Nicotiana benthamiana</i> by application of ascorbic acid. Plant Physiology, 2021, 186, 832-835.                                                           | 4.8 | 19        |
| 8  | Efficient base editing in tomato using a highly expressed transient system. Plant Cell Reports, 2021, 40,<br>667-676.                                                                                                  | 5.6 | 8         |
| 9  | Different DNA-binding specificities of NLP and NIN transcription factors underlie nitrate-induced control of root nodulation. Plant Cell, 2021, 33, 2340-2359.                                                         | 6.6 | 52        |
| 10 | Involvement of Activation of Mast Cells via IgE Signaling and Epithelial Cell–Derived Cytokines in the<br>Pathogenesis of Pollen Food Allergy Syndrome in a Murine Model. Journal of Immunology, 2021, ,<br>ji2000518. | 0.8 | 5         |
| 11 | Specific methylation of (11R)-carlactonoic acid by an Arabidopsis SABATH methyltransferase. Planta, 2021, 254, 88.                                                                                                     | 3.2 | 18        |
| 12 | Strigolactone biosynthesis catalyzed by cytochrome P450 and sulfotransferase in sorghum. New Phytologist, 2021, 232, 1999-2010.                                                                                        | 7.3 | 28        |
| 13 | Transient protein expression systems in plants and their applications. Plant Biotechnology, 2021, 38, 297-304.                                                                                                         | 1.0 | 27        |
| 14 | Transient expression of recombinant proteins in plants. Methods in Enzymology, 2021, 660, 193-203.                                                                                                                     | 1.0 | 8         |
| 15 | The PHD finger of Arabidopsis SIZ1 recognizes trimethylated histone H3K4 mediating SIZ1 function and abiotic stress response. Communications Biology, 2020, 3, 23.                                                     | 4.4 | 36        |
| 16 | RAP Tag and PMab-2 Antibody: A Tagging System for Detecting and Purifying Proteins in Plant Cells.<br>Frontiers in Plant Science, 2020, 11, 510444.                                                                    | 3.6 | 11        |
| 17 | Autoregulation of nodulation pathway is dispensable for nitrate-induced control of rhizobial infection. Plant Signaling and Behavior, 2020, 15, 1733814.                                                               | 2.4 | 10        |
| 18 | High-Yield Production of the Major Birch Pollen Allergen Bet v 1 With Allergen Immunogenicity in<br>Nicotiana benthamiana. Frontiers in Plant Science, 2020, 11, 344.                                                  | 3.6 | 13        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Radish sprouts as an efficient and rapidly available host for an agroinfiltration-based transient gene<br>expression system. Plant Biotechnology, 2020, 37, 89-92.                                                 | 1.0  | 9         |
| 20 | Genome editing in <i>PDS</i> genes of tomatoes by non-selection method and of<br><i>Nicotiana benthamiana</i> by one single guide RNA to edit two orthologs. Plant<br>Biotechnology, 2020, 37, 213-221.            | 1.0  | 10        |
| 21 | Presence of a basic secretory protein in xylem sap and shoots of poplar in winter and its<br>physicochemical activities against winter environmental conditions. Journal of Plant Research, 2019,<br>132, 655-665. | 2.4  | 1         |
| 22 | Agroinfiltration-based efficient transient protein expression in leguminous plants. Plant<br>Biotechnology, 2019, 36, 119-123.                                                                                     | 1.0  | 21        |
| 23 | LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus. PLoS Genetics, 2019, 15, e1007865.                            | 3.5  | 23        |
| 24 | Efficient transient protein expression in tomato cultivars and wild species using agroinfiltration-mediated high expression system. Plant Cell Reports, 2019, 38, 75-84.                                           | 5.6  | 32        |
| 25 | Application and development of genome editing technologies to the Solanaceae plants. Plant<br>Physiology and Biochemistry, 2018, 131, 37-46.                                                                       | 5.8  | 25        |
| 26 | A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis inÂLotus japonicus.<br>Nature Communications, 2018, 9, 499.                                                                           | 12.8 | 144       |
| 27 | Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+<br>increase and cold tolerance in Arabidopsis. Scientific Reports, 2018, 8, 550.                                        | 3.3  | 97        |
| 28 | Improvement of the transient expression system for production of recombinant proteins in plants.<br>Scientific Reports, 2018, 8, 4755.                                                                             | 3.3  | 129       |
| 29 | Genome editing technologies for plant physiology. Plant Physiology and Biochemistry, 2018, 131, 1.                                                                                                                 | 5.8  | 2         |
| 30 | MYC-type transcription factors, MYC67 and MYC70, interact with ICE1 and negatively regulate cold tolerance in Arabidopsis. Scientific Reports, 2018, 8, 11622.                                                     | 3.3  | 21        |
| 31 | Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature<br>Biotechnology, 2017, 35, 441-443.                                                                                | 17.5 | 632       |
| 32 | Current status and future of genome editing technologies for breeding of agricultural products.<br>Ikushugaku Kenkyu, 2017, 19, 14-20.                                                                             | 0.3  | 1         |
| 33 | Transcriptome and proteome analyses provide insight into laticifer's defense of Euphorbia tirucalli against pests. Plant Physiology and Biochemistry, 2016, 108, 434-446.                                          | 5.8  | 16        |
| 34 | An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1<br>Activity. PLoS Genetics, 2016, 12, e1006016.                                                                     | 3.5  | 90        |
| 35 | Overexpression of SIZ1 enhances tolerance to cold and salt stresses and attenuates response to abscisic acid in Arabidopsis thaliana. Plant Biotechnology, 2014, 31, 167-172.                                      | 1.0  | 19        |
| 36 | Accumulation of endogenous salicylic acid confers drought tolerance to <i>Arabidopsis</i> . Plant<br>Signaling and Behavior, 2014, 9, e28085.                                                                      | 2.4  | 51        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 2014, 5, 4.                                                                                                                                  | 3.6 | 582       |
| 38 | <i><scp>XTH</scp>20</i> and <i><scp>XTH</scp>19</i> regulated by <scp>ANAC</scp> 071 under auxin<br>flow are involved in cell proliferation in incised <i>Arabidopsis</i> inflorescence stems. Plant<br>Journal, 2014, 80, 604-614.                  | 5.7 | 66        |
| 39 | Raphanusanin-mediated resistance to pathogens is light dependent in radish and Arabidopsis thaliana.<br>Planta, 2014, 240, 513-524.                                                                                                                  | 3.2 | 2         |
| 40 | Cold Signaling and Cold Response in Plants. International Journal of Molecular Sciences, 2013, 14, 5312-5337.                                                                                                                                        | 4.1 | 376       |
| 41 | <scp><i>SIZ1</i></scp> deficiency causes reduced stomatal aperture and enhanced drought tolerance<br>via controlling salicylic acidâ€induced accumulation of reactive oxygen species in<br><scp>A</scp> rabidopsis. Plant Journal, 2013, 73, 91-104. | 5.7 | 238       |
| 42 | Nitrogen and Phosphorus Nutrition Under Salinity Stress. , 2013, , 425-441.                                                                                                                                                                          |     | 13        |
| 43 | ICE1, a Transcription Factor Involved in Cold Signaling and Tolerance. , 2013, , 189-195.                                                                                                                                                            |     | 1         |
| 44 | Abiotic Stress and Role of Salicylic Acid in Plants. , 2012, , 235-251.                                                                                                                                                                              |     | 74        |
| 45 | MMS21/HPY2 and SIZ1, Two Arabidopsis SUMO E3 Ligases, Have Distinct Functions in Development. PLoS ONE, 2012, 7, e46897.                                                                                                                             | 2.5 | 77        |
| 46 | SIICE1 encoding a MYC-type transcription factor controls cold tolerance in tomato, Solanum lycopersicum. Plant Biotechnology, 2012, 29, 253-260.                                                                                                     | 1.0 | 65        |
| 47 | Accumulation of antioxidants and antioxidant activity in tomato, Solanum lycopersicum, are enhanced by the transcription factor SIICE1. Plant Biotechnology, 2012, 29, 261-269.                                                                      | 1.0 | 26        |
| 48 | ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance.<br>Plant Journal, 2011, 67, 269-279.                                                                                                              | 5.7 | 86        |
| 49 | Increased tolerance to salt stress in the phosphate-accumulating Arabidopsis mutants siz1 and pho2.<br>Planta, 2011, 234, 1191-1199.                                                                                                                 | 3.2 | 56        |
| 50 | Root architecture remodeling induced by phosphate starvation. Plant Signaling and Behavior, 2011, 6, 1122-1126.                                                                                                                                      | 2.4 | 33        |
| 51 | <i>SIZ1</i> Regulation of Phosphate Starvation-Induced Root Architecture Remodeling Involves the<br>Control of Auxin Accumulation   Â. Plant Physiology, 2011, 155, 1000-1012.                                                                       | 4.8 | 175       |
| 52 | The <i>Arabidopsis</i> GTL1 Transcription Factor Regulates Water Use Efficiency and Drought<br>Tolerance by Modulating Stomatal Density via Transrepression of <i>SDD1</i> Â Â. Plant Cell, 2011, 22,<br>4128-4141.                                  | 6.6 | 295       |
| 53 | Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends in Cell<br>Biology, 2010, 20, 223-232.                                                                                                                       | 7.9 | 171       |
| 54 | Comparative transcriptional profiling-based identification of raphanusanin-inducible genes. BMC<br>Plant Biology, 2010, 10, 111.                                                                                                                     | 3.6 | 2         |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | SIZ1 Controls Cell Growth and Plant Development in Arabidopsis Through Salicylic Acid. Plant and Cell Physiology, 2010, 51, 103-113.                                                                                   | 3.1 | 134       |
| 56 | SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. Journal of Plant Physiology, 2010, 167, 555-560.                                           | 3.5 | 89        |
| 57 | Cold-responsive gene regulation during cold acclimation in plants. Plant Signaling and Behavior, 2010, 5, 948-952.                                                                                                     | 2.4 | 66        |
| 58 | The Phosphate Transporter PHT4;6 Is a Determinant of Salt Tolerance that Is Localized to the Golgi<br>Apparatus of Arabidopsis. Molecular Plant, 2009, 2, 535-552.                                                     | 8.3 | 83        |
| 59 | Sumoylation and abscisic acid signaling. Plant Signaling and Behavior, 2009, 4, 1176-1178.                                                                                                                             | 2.4 | 26        |
| 60 | SUMO E3 Ligase HIGH PLOIDY2 Regulates Endocycle Onset and Meristem Maintenance<br>in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2284-2297.                                                                          | 6.6 | 186       |
| 61 | Sumoylation of ABI5 by the <i>Arabidopsis</i> SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5418-5423. | 7.1 | 332       |
| 62 | The SUMO E3 ligase, <i>AtSIZ1</i> , regulates flowering by controlling a salicylic acidâ€mediated floral promotion pathway and through affects on <i>FLC</i> chromatin structure. Plant Journal, 2008, 53, 530-540.    | 5.7 | 216       |
| 63 | Regulation of cold signaling by sumoylation of ICE1. Plant Signaling and Behavior, 2008, 3, 52-53.                                                                                                                     | 2.4 | 24        |
| 64 | Expression Analysis of Genes Associated with the Induction of the Carbon-Concentrating Mechanism<br>in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2008, 147, 340-354.                                        | 4.8 | 99        |
| 65 | Regulation of Plant Innate Immunity by SUMO E3 Ligase. Plant Signaling and Behavior, 2007, 2, 253-254.                                                                                                                 | 2.4 | 14        |
| 66 | SIZ1-Mediated Sumoylation of ICE1 Controls CBF3/DREB1A Expression and Freezing Tolerance in Arabidopsis. Plant Cell, 2007, 19, 1403-1414.                                                                              | 6.6 | 652       |
| 67 | Sumoylation, a post-translational regulatory process in plants. Current Opinion in Plant Biology, 2007, 10, 495-502.                                                                                                   | 7.1 | 193       |
| 68 | Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant<br>Journal, 2006, 49, 79-90.                                                                                         | 5.7 | 271       |
| 69 | SIZ1 Small Ubiquitin-Like Modifier E3 Ligase Facilitates Basal Thermotolerance in Arabidopsis<br>Independent of Salicylic Acid. Plant Physiology, 2006, 142, 1548-1558.                                                | 4.8 | 164       |
| 70 | The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7760-7765.                                    | 7.1 | 556       |
| 71 | The Novel Myb Transcription Factor LCR1 Regulates the CO2-Responsive Gene Cah1, Encoding a<br>Periplasmic Carbonic Anhydrase in Chlamydomonas reinhardtii Â[W]. Plant Cell, 2004, 16, 1466-1477.                       | 6.6 | 108       |
| 72 | Expression Profiling-Based Identification of CO2-Responsive Genes Regulated by CCM1 Controlling a<br>Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii. Plant Physiology, 2004, 135, 1595-1607.              | 4.8 | 188       |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | AtHKT1 Facilitates Na+ Homeostasis and K+ Nutrition in Planta. Plant Physiology, 2004, 136, 2500-2511.                                                                                                                                                      | 4.8 | 297       |
| 74 | The transcriptional program of synchronous gametogenesis in Chlamydomonas reinhardtii. Current<br>Genetics, 2004, 46, 304-315.                                                                                                                              | 1.7 | 53        |
| 75 | Establishment of publicly available cDNA material and information resource of Chlamydomonas<br>reinhardtii (Chlorophyta) to facilitate gene function analysis. Phycologia, 2004, 43, 722-726.                                                               | 1.4 | 24        |
| 76 | Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization.<br>Biochemical and Biophysical Research Communications, 2003, 301, 711-717.                                                                                      | 2.1 | 145       |
| 77 | Regulation of a carbon concentrating mechanism through CCM1 in Chlamydomonas reinhardtii.<br>Functional Plant Biology, 2002, 29, 211.                                                                                                                       | 2.1 | 15        |
| 78 | Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in<br>Chlamydomonas reinhardtii by sensing CO2 availability. Proceedings of the National Academy of<br>Sciences of the United States of America, 2001, 98, 5347-5352. | 7.1 | 167       |
| 79 | Characteristics and Sequence of Phosphoglycolate Phosphatase from a Eukaryotic Green Alga<br>Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2001, 276, 45573-45579.                                                                            | 3.4 | 35        |
| 80 | Comparison of Expressed Sequence Tags from Male and Female Sexual Organs of Marchantia polymorpha. DNA Research, 2000, 7, 165-174.                                                                                                                          | 3.4 | 20        |
| 81 | Generation of Expressed Sequence Tags from Low-CO2 and High-CO2 Adapted Cells of Chlamydomonas reinhardtii. DNA Research, 2000, 7, 305-307.                                                                                                                 | 3.4 | 107       |
| 82 | Isolation and characterization of high-CO2 requiring mutants from Chlamydomonas reinhardtii by<br>gene tagging. Canadian Journal of Botany, 1998, 76, 1092-1097.                                                                                            | 1.1 | 11        |
| 83 | lsolation and characterization of high-CO <sub>2</sub> requiring mutants from<br><i>Chlamydomonas reinhardtii</i> by gene tagging. Canadian Journal of Botany, 1998, 76,<br>1092-1097.                                                                      | 1.1 | 16        |