Wioletta Rut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7784738/publications.pdf

Version: 2024-02-01

24 papers

1,354 citations

471509 17 h-index 24 g-index

28 all docs

28 docs citations

28 times ranked

2284 citing authors

#	Article	IF	CITATIONS
1	Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Science Advances, 2020, 6, .	10.3	344
2	SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nature Chemical Biology, 2021, 17, 222-228.	8.0	215
3	Small Molecule Active Site Directed Tools for Studying Human Caspases. Chemical Reviews, 2015, 115, 12546-12629.	47.7	68
4	Selective imaging of cathepsinÂL in breast cancer by fluorescent activity-based probes. Chemical Science, 2018, 9, 2113-2129.	7.4	64
5	SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme. Biochemical Journal, 2015, 468, 215-226.	3.7	60
6	Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CLpro substrate degradome. Cell Reports, 2021, 37, 109892.	6.4	60
7	Extended substrate specificity and first potent irreversible inhibitor/activity-based probe design for Zika virus NS2B-NS3 protease. Antiviral Research, 2017, 139, 88-94.	4.1	55
8	Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families. Scientific Reports, 2017, 7, 43135.	3.3	51
9	Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes. Cell Chemical Biology, 2016, 23, 1023-1035.	5.2	45
10	A molecular sensor determines the ubiquitin substrate specificity of SARS-CoV-2 papain-like protease. Cell Reports, 2021, 36, 109754.	6.4	30
11	Selective Substrates and Activity-Based Probes for Imaging of the Human Constitutive 20S Proteasome in Cells and Blood Samples. Journal of Medicinal Chemistry, 2018, 61, 5222-5234.	6.4	28
12	Multiplexed Probing of Proteolytic Enzymes Using Mass Cytometry-Compatible Activity-Based Probes. Journal of the American Chemical Society, 2020, 142, 16704-16715.	13.7	27
13	Recent advances and concepts in substrate specificity determination of proteases using tailored libraries of fluorogenic substrates with unnatural amino acids. Biological Chemistry, 2015, 396, 329-337.	2.5	22
14	Unique Substrate Specificity of SplE Serine Protease from Staphylococcus aureus. Structure, 2018, 26, 572-579.e4.	3.3	22
15	Potent and selective caspase-2 inhibitor prevents MDM-2 cleavage in reversine-treated colon cancer cells. Cell Death and Differentiation, 2019, 26, 2695-2709.	11.2	22
16	Glycosylation is important for legumain localization and processing to active forms but not for cystatin E/M inhibitory functions. Biochimie, 2017, 139, 27-37.	2.6	21
17	Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes. Chemical Science, 2020, 11, 6058-6069.	7.4	19
18	Structural basis for substrate specificity of Helicobacter pylori M17 aminopeptidase. Biochimie, 2016, 121, 60-71.	2.6	18

#	Article	IF	CITATION
19	Human 20S proteasome activity towards fluorogenic peptides of various chain lengths. Biological Chemistry, 2016, 397, 921-926.	2.5	15
20	Profiling of flaviviral NS2B-NS3 protease specificity provides a structural basis for the development of selective chemical tools that differentiate Dengue from Zika and West Nile viruses. Antiviral Research, 2020, 175, 104731.	4.1	14
21	Re-emerging Aspartic Protease Targets: Examining <i>Cryptococcus neoformans</i> Major Aspartyl Peptidase 1 as a Target for Antifungal Drug Discovery. Journal of Medicinal Chemistry, 2021, 64, 6706-6719.	6.4	14
22	Structure and substrate fingerprint of aminopeptidase P from <i>Plasmodium falciparum </i> Biochemical Journal, 2016, 473, 3189-3204.	3.7	11
23	Fluorescent activity-based probe for the selective detection of Factor VII activating protease (FSAP) in human plasma. Thrombosis Research, 2019, 182, 124-132.	1.7	10
24	Development of an advanced nanoformulation for the intracellular delivery of a caspase-3 selective activity-based probe. Nanoscale, 2019, 11, 742-751.	5.6	6