Alastair V Ferguson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7784478/publications.pdf

Version: 2024-02-01

38742 71685 7,385 179 50 76 citations h-index g-index papers 180 180 180 4353 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	The paraventricular nucleus of the hypothalamus – a potential target for integrative treatment of autonomic dysfunction. Expert Opinion on Therapeutic Targets, 2008, 12, 717-727.	3.4	249
2	Sensory circumventricular organs: central roles in integrated autonomic regulation. Regulatory Peptides, 2004, $117, 11-23$.	1.9	178
3	The Area Postrema: A Brain Monitor and Integrator of Systemic Autonomic State. Neuroscientist, 2008, 14, 182-194.	3.5	174
4	Facilitatory influence of noradrenergic afferents on the excitability of rat paraventricular nucleus neurosecretory cells Journal of Physiology, 1984, 355, 237-249.	2.9	170
5	The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Frontiers in Neuroendocrinology, 2003, 24, 141-150.	5.2	164
6	Nitric oxide regulates NMDAâ€driven GABAergic inputs to type I neurones of the rat paraventricular nucleus Journal of Physiology, 1997, 499, 733-746.	2.9	149
7	The sensory circumventricular organs: Brain targets for circulating signals controlling ingestive behavior. Physiology and Behavior, 2007, 91, 413-423.	2.1	129
8	Functional evidence that the angiotensin antagonist losartan crosses the blood-brain barrier in the rat. Brain Research Bulletin, 1993, 30, 33-39.	3.0	125
9	Angiotensin II:A peptidergic neurotransmitter in central autonomic pathways. Progress in Neurobiology, 1998, 54, 169-192.	5.7	125
10	Angiotensin II actions in paraventricular nucleus: functional evidence for neurotransmitter role in efferents originating in subfornical organ. Brain Research, 1992, 599, 223-229.	2.2	122
11	Orexin actions in hypothalamic paraventricular nucleus: physiological consequences and cellular correlates. Regulatory Peptides, 2002, 104, 97-103.	1.9	121
12	Nitric oxide actions in paraventricular nucleus: cardiovascular and neurochemical implications. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1994, 266, R306-R313.	1.8	111
13	Hormonal and Neurotransmitter Roles for Angiotensin in the Regulation of Central Autonomic Function. Experimental Biology and Medicine, 2001, 226, 85-96.	2.4	110
14	Subfornical organ-supraoptic nucleus connections: An electrophysiologic study in the rat. Brain Research, 1984, 303, 7-13.	2.2	105
15	Electrophysiology of the Circumventricular Organs. Frontiers in Neuroendocrinology, 1996, 17, 440-475.	5.2	103
16	Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Research, 2008, 1230, 99-106.	2.2	101
17	Neuronostatin Encoded by the Somatostatin Gene Regulates Neuronal, Cardiovascular, and Metabolic Functions. Journal of Biological Chemistry, 2008, 283, 31949-31959.	3.4	94
18	Hypothalamic paraventricular nucleus lesions decrease pressor responses to subfornical organ stimulation. Brain Research, 1984, 305, 361-364.	2.2	93

#	Article	IF	CITATIONS
19	Subfornical organ efferents to paraventricular nucleus utilize angiotensin as a neurotransmitter. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1993, 265, R302-R309.	1.8	92
20	Intrinsic osmosensitivity of subfornical organ neurons. Neuroscience, 2000, 100, 539-547.	2.3	92
21	Orexin-A Depolarizes Nucleus Tractus Solitarius Neurons Through Effects on Nonselective Cationic and K+ Conductances. Journal of Neurophysiology, 2003, 89, 2167-2175.	1.8	92
22	Paraventricular nucleus neurons projecting to the spinal cord receive excitatory input from the subfornical organ. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1995, 268, R625-R633.	1.8	91
23	Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: Modulation of IA by angiotensin II. Neuroscience, 1996, 71, 133-145.	2.3	90
24	Interleukin 1β Modulates Rat Subfornical Organ Neurons as a Result of Activation of a Nonâ€Selective Cationic Conductance. Journal of Physiology, 2003, 550, 113-122.	2.9	88
25	Angiotensin II responsiveness of rat paraventricular and subfornical organ neurons in vitro. Neuroscience, 1993, 55, 197-207.	2.3	87
26	Circulating signals as critical regulators of autonomic stateâ€"central roles for the subfornical organ. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R405-R415.	1.8	87
27	Noradrenergic Afferents Facilitate the Activity of Tuberoinfundibular Neurons of the Hypothalamic Paraventricular Nucleus. Neuroendocrinology, 1985, 41, 17-22.	2.5	85
28	Area Postrema Neurons Are Modulated by the Adipocyte Hormone Adiponectin. Journal of Neuroscience, 2006, 26, 9695-9702.	3.6	85
29	The Subfornical Organ: A Central Target for Circulating Feeding Signals. Journal of Neuroscience, 2006, 26, 2022-2030.	3.6	83
30	Subfornical Organ Efferents Influence the Excitability of Neurohypophyseal and Tuberoinfundibular Paraventricular Nucleus Neurons in the Rat. Neuroendocrinology, 1984, 39, 423-428.	2.5	82
31	Excitatory Effects of Orexin-A on Nucleus Tractus Solitarius Neurons Are Mediated by Phospholipase C and Protein Kinase C. Journal of Neuroscience, 2003, 23, 6215-6222.	3.6	82
32	Cellular mechanisms of orexin actions on paraventricular nucleus neurones in rat hypothalamus. Journal of Physiology, 2002, 545, 855-867.	2.9	78
33	Angiotensinergic Regulation of Autonomic and Neuroendocrine Outputs: Critical Roles for the Subfornical Organ and Paraventricular Nucleus. Neuroendocrinology, 2009, 89, 370-376.	2.5	78
34	Microinjection of orexin into the rat nucleus tractus solitarius causes increases in blood pressure. Brain Research, 2002, 950, 261-267.	2.2	77
35	Nesfatinâ€1 Influences the Excitability of Paraventricular Nucleus Neurones. Journal of Neuroendocrinology, 2008, 20, 245-250.	2.6	75
36	Analysis of the Role of Angiotensin II in Mediation of Adrenocorticotropin Secretion*. Endocrinology, 1988, 122, 538-545.	2.8	68

#	Article	IF	Citations
37	Hypocretin/orexin type 1 receptor in brain: role in cardiovascular control and the neuroendocrine response to immobilization stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R382-R387.	1.8	68
38	Nitric oxide depolarizes Type II paraventricular nucleus neurons in vitro. Neuroscience, 1997, 79, 149-159.	2.3	66
39	Orexin-A Depolarizes Dissociated Rat Area Postrema Neurons through Activation of a Nonselective Cationic Conductance. Journal of Neuroscience, 2002, 22, 6303-6308.	3.6	63
40	Subfornical organ neurons projecting to paraventricular nucleus: whole-cell properties. Brain Research, 2001, 921, 78-85.	2.2	62
41	Non-sleep effects of hypocretin/orexin. Sleep Medicine Reviews, 2005, 9, 243-252.	8.5	61
42	The area postrema: a cardiovascular control centre at the blood-brain interface?. Canadian Journal of Physiology and Pharmacology, 1991, 69, 1026-1034.	1.4	60
43	Angiotensin II neurotransmitter actions in paraventricular nucleus are potentiated by a nitric oxide synthase inhibitor. Regulatory Peptides, 1994, 50, 52-59.	1.9	58
44	Adiponectin selectively inhibits oxytocin neurons of the paraventricular nucleus of the hypothalamus. Journal of Physiology, 2007, 585, 805-816.	2.9	58
45	Central actions of angiotensin in cardiovascular control: Multiple roles for a single peptide. Canadian Journal of Physiology and Pharmacology, 1992, 70, 779-785.	1.4	57
46	Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R1914-R1920.	1.8	57
47	Circumventricular organs: Targets for integration of circulating fluid and energy balance signals?. Physiology and Behavior, 2013, 121, 96-102.	2.1	57
48	Interleukin- $1\hat{l}^2$ Depolarizes Paraventricular Nucleus Parvocellular Neurones. Journal of Neuroendocrinology, 2003, 15, 126-133.	2.6	56
49	Adiponectin Depolarizes Parvocellular Paraventricular Nucleus Neurons Controlling Neuroendocrine and Autonomic Function. Endocrinology, 2009, 150, 832-840.	2.8	53
50	The subfornical organ: a central nervous system site for actions of circulating leptin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R512-R520.	1.8	52
51	Angiotensin acts at the subfornical organ to increase plasma oxytocin concentrations in the rat. Regulatory Peptides, 1988, 23, 343-352.	1.9	49
52	Nesfatin-1 influences the excitability of neurons in the nucleus of the solitary tract and regulates cardiovascular function. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1297-R1304.	1.8	49
53	Electrical stimulation in subfornical organ increases plasma vasopressin concentrations in the conscious rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1986, 251, R425-R428.	1.8	46
54	Endothelin acts at the subfornical organ to influence the activity of putative vasopressin and oxytocin-secreting neurons. Brain Research, 1992, 586, 111-116.	2.2	46

#	Article	IF	CITATIONS
55	Whole cell patch recordings from forebrain slices demonstrate angiotensin II inhibits potassium currents in subfornical organ neurons. Regulatory Peptides, 1996, 66, 55-58.	1.9	45
56	Ghrelin modulates electrical activity of area postrema neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R485-R492.	1.8	45
57	Cardiovascular responses induced by endothelin microinjection into area postrema. Regulatory Peptides, 1990, 27, 75-85.	1.9	44
58	Leptin depolarizes rat hypothalamic paraventricular nucleus neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R1468-R1472.	1.8	44
59	Systemic Angiotensin Acts at the Subfornical Organ to Control the Activity of Paraventricular Nucleus Neurons with Identified Projections to the Median Eminence. Neuroendocrinology, 1988, 47, 489-497.	2.5	43
60	Electrophysiological characterization of reciprocal connections between the parabrachial nucleus and the area postrema in the rat. Brain Research Bulletin, 1990, 24, 577-582.	3.0	42
61	Prostaglandin E2 Mediates Cellular Effects of Interleukin-1beta on Parvocellular Neurones in the Paraventricular Nucleus of the Hypothalamus. Journal of Neuroendocrinology, 2005, 17, 498-508.	2.6	41
62	Neurophysiology of hunger and satiety. Developmental Disabilities Research Reviews, 2008, 14, 96-104.	2.9	40
63	Dissociated Adult Rat Subfornical Organ Neurons Maintain Membrane Properties and Angiotensin Responsiveness for up to 6 Days. Neuroendocrinology, 1997, 66, 409-415.	2.5	39
64	Control of neuronal excitability by an ion-sensing receptor. European Journal of Neuroscience, 1999, 11, 1947-1954.	2.6	39
65	Making sense of it: roles of the sensory circumventricular organs in feeding and regulation of energy homeostasis. Experimental Biology and Medicine, 2007, 232, 14-26.	2.4	37
66	A subthreshold persistent sodium current mediates bursting in rat subfornical organ neurones. Journal of Physiology, 2000, 529, 359-371.	2.9	36
67	Apelin acts in the subfornical organ to influence neuronal excitability and cardiovascular function. Journal of Physiology, 2013, 591, 3421-3432.	2.9	36
68	Prokineticin 2 Modulates the Excitability of Subfornical Organ Neurons. Journal of Neuroscience, 2004, 24, 2375-2379.	3.6	35
69	Actions of endothelin at the subfornical organ. Brain Research, 1992, 570, 180-187.	2.2	34
70	Subfornical organ stimulation elicits drinking. Brain Research Bulletin, 1995, 38, 209-213.	3.0	34
71	ANG II-induced excitation of paraventricular nucleus magnocellular neurons: a role for glutamate interneurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R894-R902.	1.8	34
72	Lesions of area postrema and subfornical organ alter exendin-4-induced brain activation without preventing the hypophagic effect of the GLP-1 receptor agonist. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R1098-R1110.	1.8	34

#	Article	IF	CITATIONS
73	Gastrointestinal hormone actions in the central regulation of energy metabolism: potential sensory roles for the circumventricular organs. International Journal of Obesity, 2009, 33, S16-S21.	3.4	33
74	Effects of albuminâ€conjugated PYY on food intake: the respective roles of the circumventricular organs and vagus nerve. European Journal of Neuroscience, 2010, 32, 826-839.	2.6	33
75	Modification of thermoregulatory responses in rabbits reared at elevated environmental temperatures Journal of Physiology, 1980, 303, 165-172.	2.9	32
76	Local circuitry regulates the excitability of rat neurohypophysial neurones. Experimental Physiology, 2000, 85, 153s-161s.	2.0	32
77	Adiponectin acts in the nucleus of the solitary tract to decrease blood pressure by modulating the excitability of neuropeptide Y neurons. Brain Research, 2009, 1256, 76-84.	2.2	32
78	Electrophysiology of the subfornical organ and its hypothalamic connections—an in-vivo study in the rat. Brain Research Bulletin, 1985, 15, 83-86.	3.0	31
79	Activation of subfornical organ efferents stimulates oxytocin secretion in the rat. Regulatory Peptides, 1987, 18, 93-100.	1.9	31
80	Interleukin- $1\hat{l}^2$ depolarizes magnocellular neurons in the paraventricular nucleus of the hypothalamus through prostaglandin-mediated activation of a non selective cationic conductance. Regulatory Peptides, 2005, 129, 63-71.	1.9	31
81	Obestatin inhibits vasopressin secretion: evidence for a physiological action in the control of fluid homeostasis. Journal of Endocrinology, 2008, 196, 559-564.	2.6	31
82	Inhibition of subfornical organ neuronal potassium channels by vasopressin. Neuroscience, 1999, 93, 349-359.	2.3	29
83	Orexin receptor subtype activation and locomotor behaviour in the rat. Acta Physiologica, 2010, 198, 313-324.	3.8	29
84	Glucose-responsive neurons in the subfornical organ of the ratâ€"a novel site for direct CNS monitoring of circulating glucose. Neuroscience, 2012, 201, 157-165.	2.3	29
85	Area postrema stimulation induced cardiovascular changes in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1988, 255, R855-R860.	1.8	28
86	Vasopressin Acts in the Subfornical Organ to Decrease Blood Pressure. Neuroendocrinology, 1997, 66, 130-135.	2.5	28
87	Physiological roles for the subfornical organ: a dynamic transcriptome shaped by autonomic state. Journal of Physiology, 2016, 594, 1581-1589.	2.9	28
88	Circulating endothelin influences area postrema neurons. Regulatory Peptides, 1991, 32, 11-21.	1.9	27
89	Chapter 54: Neurophysiological analysis of mechanisms for subfornical organ and area postrema involvement in autonomic control. Progress in Brain Research, 1992, 91, 413-421.	1.4	27
90	Angiotensin depolarizes parvocellular neurons in paraventricular nucleus through modulation of putative nonselective cationic and potassium conductances. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R52-R58.	1.8	27

#	Article	IF	CITATIONS
91	Prokineticin $\hat{a} \in f2$ depolarizes paraventricular nucleus magnocellular and parvocellular neurons. European Journal of Neuroscience, 2007, 25, 425-434.	2.6	27
92	Cardiovascular Actions of Orexin-A in the Rat Subfornical Organ. Journal of Neuroendocrinology, 2007, 19, 7-13.	2.6	27
93	Cardiovascular Actions of Leptin in the Subfornical Organ are Abolished by Dietâ€Induced Obesity. Journal of Neuroendocrinology, 2012, 24, 504-510.	2.6	27
94	Novel regulator of vasopressin secretion: phoenixin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R623-R628.	1.8	27
95	Circulating vasopressin influences area postrema neurons. Neuroscience, 1994, 59, 185-194.	2.3	26
96	Selective potentiation of Nâ€type calcium channels by angiotensin II in rat subfornical organ neurones. Journal of Physiology, 2001, 536, 667-675.	2.9	26
97	Actions of adiponectin on the excitability of subfornical organ neurons are altered by food deprivation. Brain Research, 2010, 1330, 72-82.	2.2	26
98	Acute electrical stimulation of the subfornical organ induces feeding in satiated rats. Physiology and Behavior, 2010, 99, 534-537.	2.1	26
99	Angiotensin II Activates a Nitric-Oxide-Driven Inhibitory Feedback in the Rat Paraventricular Nucleus. Journal of Neurophysiology, 2003, 89, 1238-1244.	1.8	25
100	Evidence of environmental influence on the development of thermoregulation in the rat. Canadian Journal of Physiology and Pharmacology, 1981, 59, 91-95.	1.4	24
101	Leptin influences the excitability of area postrema neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R440-R448.	1.8	24
102	Activation of N-methyl-d-aspartate receptors evokes calcium spikes in the dendrites of rat hypothalamic paraventricular nucleus neurons. Neuroscience, 1999, 90, 885-891.	2.3	23
103	The proinflammatory cytokine tumor necrosis factor- \hat{l}_{\pm} excites subfornical organ neurons. Journal of Neurophysiology, 2017, 118, 1532-1541.	1.8	23
104	Adrenomedullin Acts in the Rat Paraventricular Nucleus to Decrease Blood Pressure. Journal of Neuroendocrinology, 2001, 13, 467-471.	2.6	22
105	Switching control of sympathetic activity from forebrain to hindbrain in chronic dehydration. Journal of Physiology, 2011, 589, 4457-4471.	2.9	22
106	Paraventricular nucleus neurons projecting to the dorsomedial medulla are influenced by systemic angiotensin. Brain Research Bulletin, 1988, 20, 197-201.	3.0	21
107	Cholecystokinin activates area postrema neurons in rat brain slices. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 272, R1625-R1630.	1.8	21
108	Glycemic state regulates melanocortin, but not nesfatin-1, responsiveness of glucose-sensing neurons in the nucleus of the solitary tract. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R690-R699.	1.8	21

#	Article	IF	Citations
109	Subfornical organ stimulation excites paraventricular neurons projecting to dorsal medulla. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1984, 247, R1088-R1092.	1.8	19
110	Neuropeptide W has Cell Phenotypeâ€Specific Effects on the Excitability of Different Subpopulations of Paraventricular Nucleus Neurones. Journal of Neuroendocrinology, 2009, 21, 850-857.	2.6	19
111	Depolarizing Actions of Hydrogen Sulfide on Hypothalamic Paraventricular Nucleus Neurons. PLoS ONE, 2013, 8, e64495.	2.5	19
112	Hydrogen Sulfide Regulates Cardiovascular Function by Influencing the Excitability of Subfornical Organ Neurons. PLoS ONE, 2014, 9, e105772.	2.5	18
113	Electrophysiological Effects of Ghrelin in the Hypothalamic Paraventricular Nucleus Neurons. Frontiers in Cellular Neuroscience, 2018, 12, 275.	3.7	18
114	Angiotensin II and glutamate influence area postrema neurons in rat brain slices. Regulatory Peptides, 1996, 63, 91-98.	1.9	17
115	The calcium receptor modulates the hyperpolarization-activated current in subfornical organ neurons. NeuroReport, 2000, 11, 3231-3235.	1.2	17
116	The transcriptome of the medullary area postrema: the thirsty rat, the hungry rat and the hypertensive rat. Experimental Physiology, 2011, 96, 495-504.	2.0	17
117	Hydrogen sulfide depolarizes neurons in the nucleus of the solitary tract of the rat. Brain Research, 2016, 1633, 1-9.	2.2	17
118	The afferent pathway for carotid body chemoreceptor input to the hypothalamic supraoptic nucleus in the rat. Pflugers Archiv European Journal of Physiology, 1984, 400, 80-87.	2.8	16
119	Effects of subfornical organ stimulation on respiration in the anesthetized rat. Canadian Journal of Physiology and Pharmacology, 1989, 67, 1097-1101.	1.4	16
120	Subfornical organ neurons integrate cardiovascular and metabolic signals. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R253-R262.	1.8	16
121	AT1 receptor blockade alters nutritional and biometric development in obesity-resistant and obesity-prone rats submitted to a high fat diet. Frontiers in Psychology, 2014, 5, 832.	2.1	15
122	The subfornical organ: a novel site of action of cholecystokinin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R363-R373.	1.8	15
123	Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltage-gated calcium currents in neurons of the subfornical organ. Journal of Neurophysiology, 2015, 114, 1641-1651.	1.8	15
124	Sexâ€specific differences in cardiovascular and metabolic hormones with integrated signalling in the paraventricular nucleus of the hypothalamus. Experimental Physiology, 2017, 102, 1373-1379.	2.0	15
125	The actions of ghrelin in the paraventricular nucleus: energy balance and neuroendocrine implications. Annals of the New York Academy of Sciences, 2019, 1455, 81-97.	3.8	15
126	Age-related differences in the febrile response of the New Zealand White rabbit to endotoxin. Canadian Journal of Physiology and Pharmacology, 1981, 59, 613-614.	1.4	14

#	Article	IF	Citations
127	Neurotransmitter effects on body temperature are modified with increasing age. Physiology and Behavior, 1985, 34, 977-981.	2.1	13
128	Reduced NMDA receptor sensitivity may underlie the resistance of subpopulations of PVN neurons to excitotoxicity. NeuroReport, 1997, 8, 2101-2105.	1.2	13
129	Neurohumoral Integration of Cardiovascular Function by the Lamina Terminalis. Current Hypertension Reports, 2015, 17, 93.	3.5	13
130	CNS regulation of reproduction: Peptidergic mechanisms. Brain Research Bulletin, 1984, 12, 181-186.	3.0	12
131	Slowly Inactivating Potassium Conductance (ID): A Potential Target for Stroke Therapy. Stroke, 2001, 32, 2624-2634.	2.0	12
132	Adrenomedullin influences magnocellular and parvocellular neurons of paraventricular nucleus via separate mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R1293-R1302.	1.8	12
133	Adropin acts in the rat paraventricular nucleus to influence neuronal excitability. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R511-R519.	1.8	12
134	Subfornical organ activation stimulates luteinizing hormone secretion in the rat. Brain Research, 1989, 488, 398-402.	2.2	11
135	Connections of hypothalamic paraventricular neurons with the dorsal medial thalamus and neurohypophysis: an electrophysiological study in the rat. Brain Research, 1984, 299, 376-379.	2.2	10
136	Metabolic activation of efferent pathways from the rat area postrema. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1990, 258, R788-R797.	1.8	10
137	Prokineticin 2 influences subfornical organ neurons through regulation of MAP kinase and the modulation of sodium channels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R848-R856.	1.8	10
138	Subfornical Organ Connections with Septal Neurons Projecting to the Median Eminence. Neuroendocrinology, 1988, 48, 67-71.	2.5	9
139	Hyperpolarizing after-potentials regulate generation of long-duration plateau depolarizations in rat paraventricular nucleus neurons. European Journal of Neuroscience, 1998, 10, 1412-1421.	2.6	9
140	α-MSH exerts direct postsynaptic excitatory effects on NTS neurons and enhances GABAergic signaling in the NTS. Neuroscience, 2014, 262, 70-82.	2.3	9
141	Phoenixin influences the excitability of nucleus of the solitary tract neurones, effects which are modified by environmental and glucocorticoid stress. Journal of Neuroendocrinology, 2020, 32, e12855.	2.6	9
142	Recent advances in central cardiovascular control: sex, ROS, gas and inflammation. F1000Research, 2016, 5, 420.	1.6	9
143	Circumventricular structures: CNS sensors of circulating peptides and autonomic control centres. Endocrinologia Experimentalis, 1990, 24, 19-27.	0.0	9
144	Effects of parabrachial stimulation on angiotensin and blood pressure sensitive area postrema neurons. Brain Research Bulletin, 1991, 26, 269-277.	3.0	8

#	Article	lF	Citations
145	Adrenomedullin influences dissociated rat area postrema neurons. Regulatory Peptides, 2003, 112, 9-17.	1.9	8
146	Subthreshold oscillations of membrane potential of rat subfornical organ neurons. NeuroReport, 2007, 18, 1389-1393.	1.2	8
147	Metabolic Signaling to the Central Nervous System: Routes Across the Blood Brain Barrier. Current Pharmaceutical Design, 2014, 20, 1392-1399.	1.9	8
148	Changes in the hypothalamic mechanisms involved in the control of body temperature induced by the early thermal environment. Brain Research, 1984, 290, 297-306.	2.2	7
149	Long duration pressor responses following activation of subfornical organ neurons in rats are the result of increased circulating vasopressin. Neuroscience Letters, 1997, 233, 81-84.	2.1	7
150	Circumventricular Organs: Gateways to the Brain Membrane Properties Of Subfornical Organ Neurons. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 575-580.	1.9	7
151	Cellular Actions of Nesfatinâ€1 in the Subfornical Organ. Journal of Neuroendocrinology, 2014, 26, 237-246.	2.6	7
152	Interaction between angiotensinIland glucose sensing at the subfornical organ. Journal of Neuroendocrinology, 2018, 30, e12654.	2.6	7
153	The transcriptome of the rat subfornical organ is altered in response to early postnatal overnutrition. IBRO Reports, 2018, 5, 17-23.	0.3	7
154	Effect of cooling on supraoptic neurohypophysial neuronal activity and on urine flow in the rat Journal of Physiology, 1984, 352, 103-112.	2.9	6
155	Paraventricular nucleus stimulation causes gastroduodenal mucosal necrosis in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1988, 255, R861-R865.	1.8	6
156	Autonomic mechanisms underlying area postrema stimulation-induced cardiovascular responses in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1991, 261, R1-R8.	1.8	6
157	Modified cardiovascular sensitivity of the area postrema to vasopressin in spontaneously hypertensive rats. Brain Research, 1994, 636, 165-168.	2.2	6
158	Cardiovascular and single-unit responses to subfornical organ stimulation are abolished by pentobarbital anesthesia. Canadian Journal of Physiology and Pharmacology, 1994, 72, 1031-1034.	1.4	6
159	Neuropeptide W Influences the Excitability of Neurons in the Rat Hypothalamic Arcuate Nucleus. Neuroendocrinology, 2008, 88, 88-94.	2.5	6
160	Brain-derived neurotrophic factor acts at neurons of the subfornical organ to influence cardiovascular function. Physiological Reports, 2018, 6, e13704.	1.7	6
161	Tumor necrosis factor-α potentiates the effects of angiotensin II on subfornical organ neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R425-R433.	1.8	6
162	The subfornical organ: A novel site for prolactin action. Journal of Neuroendocrinology, 2018, 30, e12613.	2.6	6

#	Article	lF	CITATIONS
163	Effects of acetylcholine and cholinergic antagonists on the activity of nucleus of the solitary tract neurons. Brain Research, 2017, 1659, 136-141.	2.2	5
164	Glucose concentrations modulate brainâ€derived neurotrophic factor responsiveness of neurones in the paraventricular nucleus of the hypothalamus. Journal of Neuroendocrinology, 2017, 29, .	2.6	5
165	Ionic mechanisms underlying tonic and burst firing behavior in subfornical organ neurons: a combined experimental and modeling study. Journal of Neurophysiology, 2018, 120, 2269-2281.	1.8	5
166	The subfornical organ and organum vasculosum of the lamina terminalis: Critical roles in cardiovascular regulation and the control of fluid balance. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 203-215.	1.8	5
167	Transient potassium conductances protect nucleus tractus solitarius neurons from NMDA induced excitotoxic plateau depolarizations. Brain Research, 2005, 1056, 1-9.	2.2	4
168	Cellular Actions of Nesfatin-1 on Hypothalamic and Medullary Neurons. Current Pharmaceutical Design, 2013, 19, 6949-6954.	1.9	4
169	The Characteristics of Medial Septal Neurons Antidromically Identified as Projecting to the Median Eminence and their Response to Gonadal Steroids. Journal of Neuroendocrinology, 1990, 2, 575-581.	2.6	2
170	Neurally mediated gastric mucosal damage in hypophysectomized rats. Canadian Journal of Physiology and Pharmacology, 1992, 70, 1109-1116.	1.4	1
171	Role of gastric acid secretion and blood flow in the development of vagal stimulation induced gastric mucosal damage. Canadian Journal of Physiology and Pharmacology, 1993, 71, 829-834.	1.4	1
172	Nesfatinâ€1 Stimulates Stress Hormone Secretion. FASEB Journal, 2010, 24, lb621.	0.5	1
173	Central Peptidergic Mechanisms in Autonomic Control. Canadian Journal of Physiology and Pharmacology, 1992, 70, 772-772.	1.4	0
174	Circuitries Involved in the Regulation of Energy Homeostasis: View from the Chair. Obesity, 2006, 14, 214S-215S.	3.0	0
175	Adiponectin controls the excitability of neurons in the nucleus of the solitary tract. FASEB Journal, 2007, 21, A457.	0.5	0
176	Electrical stimulation of the subfornical organ induces feeding and drinking in satiated rats. FASEB Journal, 2010, 24, 994.1.	0.5	0
177	Nesfatinâ€1 Influences the Excitability of Neurons in the Nucleus of the Solitary Tract. FASEB Journal, 2010, 24, 994.2.	0.5	0
178	Nesfatinâ€1 Alters Synaptic Activity in Neurons in the Nucleus of the Solitary Tract. FASEB Journal, 2012, 26, 889.4.	0.5	0
179	Subfornical organ: a novel site for the actions of cholecystokinin. FASEB Journal, 2013, 27, 1123.5.	0.5	0