Paul J Declerck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7783939/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Higher Drug Exposure During the First 24 Weeks of Ustekinumab Treatment Is Associated With Endoscopic Remission in Crohn's Disease. Clinical Gastroenterology and Hepatology, 2023, 21, 838-840.e2.	4.4	3
2	Population pharmacokineticâ€pharmacodynamic modelâ€based exploration of alternative ustekinumab dosage regimens for patients with Crohn's disease. British Journal of Clinical Pharmacology, 2022, 88, 323-335.	2.4	9
3	Both plasma basic carboxypeptidases, carboxypeptidase B2 and carboxypeptidase N, regulate vascular leakage activity in mice. Journal of Thrombosis and Haemostasis, 2022, 20, 238-244.	3.8	3
4	Intratumoral DNA-based delivery of checkpoint-inhibiting antibodies and interleukin 12 triggers T cell infiltration and anti-tumor response. Cancer Gene Therapy, 2022, 29, 984-992.	4.6	9
5	Therapeutic drug monitoring in dermatology: the way towards dose optimization of secukinumab in chronic plaque psoriasis. Clinical and Experimental Dermatology, 2022, 47, 1324-1336.	1.3	2
6	Regulatory Information and Guidance on Biosimilars and Their Use Across Europe: A Call for Strengthened One Voice Messaging. Frontiers in Medicine, 2022, 9, 820755.	2.6	16
7	Novel ELISA for the specific detection of protease NEXINâ€1 in human biological samples. Research and Practice in Thrombosis and Haemostasis, 2022, 6, .	2.3	0
8	Potent neutralizing anti-SARS-CoV-2 human antibodies cure infection with SARS-CoV-2 variants in hamster model. IScience, 2022, 25, 104705.	4.1	8
9	DNA-based delivery of anti-DR5 Nanobodies improves exposure and anti-tumor efficacy over protein-based administration. Cancer Gene Therapy, 2021, 28, 828-838.	4.6	7
10	Tissue Exposure does not Explain Non-Response in Ulcerative Colitis Patients with Adequate Serum Vedolizumab Concentrations. Journal of Crohn's and Colitis, 2021, 15, 988-993.	1.3	7
11	Miniaturized single-cell technologies for monoclonal antibody discovery. Lab on A Chip, 2021, 21, 3627-3654.	6.0	10
12	Structural Insight into the Two-Step Mechanism of PAI-1 Inhibition by Small Molecule TM5484. International Journal of Molecular Sciences, 2021, 22, 1482.	4.1	10
13	A Narrative Review on Plasminogen Activator Inhibitor-1 and Its (Patho)Physiological Role: To Target or Not to Target?. International Journal of Molecular Sciences, 2021, 22, 2721.	4.1	73
14	Thrombin Activatable Fibrinolysis Inhibitor (TAFI): An Updated Narrative Review. International Journal of Molecular Sciences, 2021, 22, 3670.	4.1	32
15	Su433 MODEL-BASED IDENTIFICATION OF AN OPTIMIZED USTEKINUMAB DOSAGE REGIMEN FOR PATIENTS WITH CROHN'S DISEASE. Gastroenterology, 2021, 160, S-687.	1.3	0
16	Knowledge and perception of biosimilars in ambulatory care: a survey among Belgian community pharmacists and physicians. Journal of Pharmaceutical Policy and Practice, 2021, 14, 53.	2.4	7
17	S62798, a potent TAFIa inhibitor, accelerates endogenous fibrinolysis in a murine model of pulmonary thromboembolism. Thrombosis Research, 2021, 204, 81-87.	1.7	2
18	Improved Potency and Safety of DNA-Encoded Antibody Therapeutics Through Plasmid Backbone and Expression Cassette Engineering. Human Gene Therapy, 2021, 32, 1200-1209.	2.7	11

#	Article	IF	CITATIONS
19	Model-Informed Precision Dosing during Infliximab Induction Therapy Reduces Variability in Exposure and Endoscopic Improvement between Patients with Ulcerative Colitis. Pharmaceutics, 2021, 13, 1623.	4.5	4
20	Development of anti-matrix metalloproteinase-2 (MMP-2) nanobodies as potential therapeutic and diagnostic tools. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102103.	3.3	16
21	Molecular mechanism of two nanobodies that inhibit PAIâ€1 activity reveals a modulation at distinct stages of the PAIâ€1/plasminogen activator interaction. Journal of Thrombosis and Haemostasis, 2020, 18, 681-692.	3.8	12
22	Structural Insights into the Mechanism of a Nanobody That Stabilizes PAI-1 and Modulates Its Activity. International Journal of Molecular Sciences, 2020, 21, 5859.	4.1	8
23	Electroporation outperforms in vivo-jetPEI for intratumoral DNA-based reporter gene transfer. Scientific Reports, 2020, 10, 19532.	3.3	7
24	Targeting PAI-1 in Cardiovascular Disease: Structural Insights Into PAI-1 Functionality and Inhibition. Frontiers in Cardiovascular Medicine, 2020, 7, 622473.	2.4	69
25	Expanding a Portfolio of (FO-) SPR Surface Chemistries with the Co(III)-NTA Oriented Immobilization of His ₆ -Tagged Bioreceptors for Applications in Complex Matrices. ACS Sensors, 2020, 5, 960-969.	7.8	23
26	The Efficacy, Safety, and Immunogenicity of Switching Between Reference Biopharmaceuticals and Biosimilars: A Systematic Review. Clinical Pharmacology and Therapeutics, 2020, 108, 734-755.	4.7	86
27	DNA-Based Delivery of Checkpoint Inhibitors in Muscle and Tumor Enables Long-Term Responses with Distinct Exposure. Molecular Therapy, 2020, 28, 1068-1077.	8.2	15
28	Nonmedical Switching From Originators to Biosimilars: Does the Nocebo Effect Explain Treatment Failures and Adverse Events in Rheumatology and Gastroenterology?. Rheumatology and Therapy, 2020, 7, 35-64.	2.3	49
29	Editorial: Gastrointestinal 2020: Novel inflammatory bowel diseaseÂtreatments and therapeutic drug monitoring. Current Opinion in Pharmacology, 2020, 55, iii-vi.	3.5	0
30	586 Intratumoral DNA-based gene transfer as an efficient delivery approach to combine checkpoint-inhibiting antibodies with interleukin 12. , 2020, , .		0
31	Bridging the Clinical Gap for DNA-Based Antibody Therapy Through Translational Studies in Sheep. Human Gene Therapy, 2019, 30, 1431-1443.	2.7	15
32	The arrival of biosimilar monoclonal antibodies in oncology: clinical studies for trastuzumab biosimilars. British Journal of Cancer, 2019, 121, 199-210.	6.4	48
33	The rise of oncology biosimilars: from process to promise. Future Oncology, 2019, 15, 3255-3265.	2.4	7
34	Different Policy Measures and Practices between Swedish Counties Influence Market Dynamics: Part 2—Biosimilar and Originator Etanercept in the Outpatient Setting. BioDrugs, 2019, 33, 299-306.	4.6	16
35	Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. , 2019, 7, 105.		103
36	Different Policy Measures and Practices between Swedish Counties Influence Market Dynamics: Part 1—Biosimilar and Originator Infliximab in the Hospital Setting. BioDrugs, 2019, 33, 285-297.	4.6	23

#	Article	IF	CITATIONS
37	Demystifying biosimilars: development, regulation and clinical use. Future Oncology, 2019, 15, 777-790.	2.4	17
38	A Genome-wide Study of Common and Rare Genetic Variants Associated with Circulating Thrombin Activatable Fibrinolysis Inhibitor. Thrombosis and Haemostasis, 2018, 118, 298-308.	3.4	8
39	Clearance of plasmin–PN-1 complexes by vascular smooth muscle cells in human aneurysm of the ascending aorta. Cardiovascular Pathology, 2018, 32, 15-25.	1.6	9
40	Monoclonal Antibody Biosimilars in Oncology: Critical Appraisal of Available Data on Switching. Clinical Therapeutics, 2018, 40, 798-809.e2.	2.5	21
41	Targeting plasminogen activator inhibitor-1 in tetracycline-induced pleural injury in rabbits. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L54-L68.	2.9	14
42	Generation and characterization of monoclonal antibodies against the N-terminus of alpha-2-antiplasmin. PLoS ONE, 2018, 13, e0196911.	2.5	1
43	Defective TAFI activation in hemophilia A mice is a major contributor to joint bleeding. Blood, 2018, 132, 1593-1603.	1.4	31
44	Prolonged <i>in vivo</i> expression and anti-tumor response of DNA-based anti-HER2 antibodies. Oncotarget, 2018, 9, 13623-13636.	1.8	22
45	The Language of Biosimilars: Clarification, Definitions, and Regulatory Aspects. Drugs, 2017, 77, 671-677.	10.9	106
46	Biopharmaceuticals: Reference Products and Biosimilars to Treat Inflammatory Diseases. Therapeutic Drug Monitoring, 2017, 39, 308-315.	2.0	8
47	Discovery of a novel conformational equilibrium in urokinase-type plasminogen activator. Scientific Reports, 2017, 7, 3385.	3.3	27
48	Amplified endogenous plasmin activity resolves acute thrombotic thrombocytopenic purpura in mice. Journal of Thrombosis and Haemostasis, 2017, 15, 2432-2442.	3.8	14
49	The road from development to approval: evaluating the body of evidence to confirm biosimilarity. Rheumatology, 2017, 56, iv4-iv13.	1.9	21
50	State of play and clinical prospects of antibody gene transfer. Journal of Translational Medicine, 2017, 15, 131.	4.4	45
51	The Market of Biopharmaceutical Medicines: A Snapshot of a Diverse Industrial Landscape. Frontiers in Pharmacology, 2017, 8, 314.	3.5	80
52	Lys 42/43/44 and Arg 12 of thrombin-activable fibrinolysis inhibitor comprise a thrombomodulin exosite essential for its antifibrinolytic potential. Thrombosis and Haemostasis, 2017, 117, 1509-1517.	3.4	2
53	Abstract 348: Lys 42, 43, 44 and Arg 12 of Thrombin Activable Fibrinolysis Inhibitor Comprise Thrombomodulin Binding Exosite Essential for Exerting Its Antifibrinolytic Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .	2.4	0
54	Generation and in vitro characterisation of inhibitory nanobodies towards plasminogen activator inhibitor 1. Thrombosis and Haemostasis, 2016, 116, 1032-1040.	3.4	14

#	Article	IF	CITATIONS
55	Haemostatic biomarkers are associated with long-term recurrent vascular events after ischaemic stroke. Thrombosis and Haemostasis, 2016, 116, 537-543.	3.4	18
56	Overcoming Barriers to the Market Access of Biosimilars in the European Union: The Case of Biosimilar Monoclonal Antibodies. Frontiers in Pharmacology, 2016, 7, 193.	3.5	65
57	Prevention of Serpin Misfolding by RNA Aptamers. Cell Chemical Biology, 2016, 23, 639-640.	5.2	Ο
58	A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior. Journal of Biological Chemistry, 2016, 291, 15156-15168.	3.4	32
59	Elucidation of the molecular mechanisms of two nanobodies that inhibit thrombinâ€activatable fibrinolysis inhibitor activation and activated thrombinâ€activatable fibrinolysis inhibitor activity. Journal of Thrombosis and Haemostasis, 2016, 14, 1629-1638.	3.8	17
60	Market Uptake Models Of Biosimilars And Off-Patent Biological Medicines. Value in Health, 2016, 19, A452.	0.3	0
61	Inhibition of Thrombin-Activatable Fibrinolysis Inhibitor and Plasminogen Activator Inhibitor-1 Reduces Ischemic Brain Damage in Mice. Stroke, 2016, 47, 2419-2422.	2.0	48
62	Selective neutralization of the serpin protease nexinâ€1 by a specific monoclonal antibody. British Journal of Haematology, 2016, 172, 631-633.	2.5	0
63	Harmonization of Infliximab and Anti-Infliximab Assays Facilitates the Comparison Between Originators and Biosimilars in Clinical Samples. Inflammatory Bowel Diseases, 2016, 22, 969-975.	1.9	44
64	Biosimilarity Versus Manufacturing Change: Two Distinct Concepts. Pharmaceutical Research, 2016, 33, 261-268.	3.5	39
65	Importance of manufacturing consistency of the glycosylated monoclonal antibody adalimumab (Humira®) and potential impact on the clinical use of biosimilars. GaBI Journal, 2016, 5, 70-73.	0.3	5
66	Defective TAFI Activation in Hemophilia Exacerbates Vascular Remodeling in Hemophilic Arthropathy. Blood, 2016, 128, 82-82.	1.4	10
67	Defective TAFI Activation in Hemophilia Worsens Joint Bleeding. Blood, 2016, 128, 3752-3752.	1.4	0
68	Generation of a stable thrombin-activatable fibrinolysis inhibitor deletion mutant exerting full carboxypeptidase activity without activation. Journal of Thrombosis and Haemostasis, 2015, 13, 1084-1089.	3.8	5
69	Long-term in vivo expression of trastuzumab following intramuscular electrotransfer of the encoding DNA in mice. , 2015, 3, .		1
70	Generation of a Highly Specific Monoclonal Anti-Infliximab Antibody for Harmonization of TNF-Coated Infliximab Assays. Therapeutic Drug Monitoring, 2015, 37, 479-485.	2.0	37
71	Development of a liquid chromatography/mass spectrometry assay for the bacterial transglycosylation reaction through measurement of Lipid II. Electrophoresis, 2015, 36, 2841-2849.	2.4	2
72	Innovative thrombolytic strategy using a heterodimer diabody against TAFI and PAI-1 in mouse models of thrombosis and stroke. Blood, 2015, 125, 1325-1332.	1.4	52

#	Article	IF	CITATIONS
73	The Occurrence of Thrombosis in Inflammatory Bowel Disease Is Reflected in the Clot Lysis Profile. Inflammatory Bowel Diseases, 2015, 21, 2540-2548.	1.9	13
74	Biosimilars – terms of use. Current Medical Research and Opinion, 2015, 31, 2325-2330.	1.9	12
75	Targeting of Plasminogen Activator Inhibitor 1 Improves Fibrinolytic Therapy for Tetracycline-Induced Pleural Injury in Rabbits. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 429-437.	2.9	28
76	Systemic inhibition and liverâ€specific overâ€expression of PAIâ€1 failed to improve survival in allâ€inclusive populations or homogenous cohorts of CLP mice. Journal of Thrombosis and Haemostasis, 2014, 12, 958-969.	3.8	10
77	Identification of a novel, nanobodyâ€induced, mechanism of TAFI inactivation and its in vivo application. Journal of Thrombosis and Haemostasis, 2014, 12, 229-236.	3.8	14
78	Development of a Universal Anti-Adalimumab Antibody Standard for Interlaboratory Harmonization. Therapeutic Drug Monitoring, 2014, 36, 669-673.	2.0	39
79	In vitro and in vivo characterisation of the profibrinolytic effect of an inhibitory anti-rat TAFI nanobody. Thrombosis and Haemostasis, 2014, 111, 824-832.	3.4	10
80	Active PAI-1 as marker for venous thromboembolism: Case–control study using a comprehensive panel of PAI-1 and TAFI assays. Thrombosis Research, 2014, 134, 1097-1102.	1.7	23
81	PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin. Nature Medicine, 2014, 20, 741-747.	30.7	86
82	P033 Prevention of recurrent Clostridium difficile infection by neutralizing monoclonal antibodies in a hamster relapse model. Journal of Crohn's and Colitis, 2014, 8, S77-S78.	1.3	0
83	Novel or expanding current targets in fibrinolysis. Drug Discovery Today, 2014, 19, 1476-1482.	6.4	24
84	Clot stability and fibrin deposition is strongly reduced in mice in which mouse TAFI is replaced by human TAFI. Thrombosis Research, 2014, 133, 1166-1168.	1.7	0
85	Effectiveness of the Electronic Cigarette: An Eight-Week Flemish Study with Six-Month Follow-up on Smoking Reduction, Craving and Experienced Benefits and Complaints. International Journal of Environmental Research and Public Health, 2014, 11, 11220-11248.	2.6	177
86	Prevention of Premature Fibrinolysis and Reduction of Bleeding in Vivo in Hemophilia with Inhibitors By a Stabilized TAFI Variant. Blood, 2014, 124, 694-694.	1.4	2
87	Common or distinct INN for biosimilars? Only characteristics of the active substance prior to formulation should be considered. GaBI Journal, 2014, 3, 8-8.	0.3	0
88	Plasmin and the thrombin–thrombomodulin complex both contribute to thrombinâ€activatable fibrinolysis inhibitor activation in whole blood model thrombi. Journal of Thrombosis and Haemostasis, 2013, 11, 190-192.	3.8	14
89	Biosimilar monoclonal antibodies: a science-based regulatory challenge. Expert Opinion on Biological Therapy, 2013, 13, 153-156.	3.1	48
90	Remarkable Stabilization of Plasminogen Activator Inhibitor 1 in a "Molecular Sandwich―Complex. Biochemistry, 2013, 52, 4697-4709.	2.5	18

#	Article	IF	CITATIONS
91	Thrombin Activatable Fibrinolysis Inhibitor: A Putative Target to Enhance Fibrinolysis. Seminars in Thrombosis and Hemostasis, 2013, 39, 365-372.	2.7	23
92	Three Decades of Research on Plasminogen Activator Inhibitor-1: A Multifaceted Serpin. Seminars in Thrombosis and Hemostasis, 2013, 39, 356-364.	2.7	141
93	Monoclonal antibodies targeting the antifibrinolytic activity of activated thrombinâ€activatable fibrinolysis inhibitor but not the antiâ€inflammatory activity on osteopontin and C5a. Journal of Thrombosis and Haemostasis, 2013, 11, 2137-2147.	3.8	17
94	Letter: dry blood spots for antiâ€TNF treatment monitoring in IBD. Alimentary Pharmacology and Therapeutics, 2013, 37, 1024-1025.	3.7	7
95	Evaluation of the profibrinolytic properties of a bispecific antibodyâ€based inhibitor against human and mouse thrombinâ€activatable fibrinolysis inhibitor and plasminogen activator inhibitorâ€1. Journal of Thrombosis and Haemostasis, 2013, 11, 2069-2071.	3.8	7
96	Nebulized Fibrinolytic Agents Improve Pulmonary Fibrinolysis but Not Inflammation in Rat Models of Direct and Indirect Acute Lung Injury. PLoS ONE, 2013, 8, e55262.	2.5	22
97	Factor VII–Activating Protease Promotes the Proteolysis and Inhibition of Tissue Factor Pathway Inhibitor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 427-433.	2.4	43
98	Glycosylation influences the stability of human plasminogen activator inhibitor-1. Blood Coagulation and Fibrinolysis, 2012, 23, 570-572.	1.0	3
99	The Biochemistry, Physiology and Pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo. Thrombosis Research, 2012, 130, 576-585.	1.7	100
100	Maximal PAI-1 inhibition in vivo requires neutralizing antibodies that recognize and inhibit glycosylated PAI-1. Thrombosis Research, 2012, 129, e126-e133.	1.7	19
101	The hyperfibrinolytic state of mice with combined thrombinâ€activatable fibrinolysis inhibitor (TAFI) and plasminogen activator inhibitorâ€1 gene deficiency is critically dependent on TAFI deficiency. Journal of Thrombosis and Haemostasis, 2012, 10, 2555-2562.	3.8	22
102	Immunological toolbox available for in situ exploration of pectic homogalacturonan and its modifying enzymes in fruits and vegetables and their derived food products. Innovative Food Science and Emerging Technologies, 2012, 15, 72-80.	5.6	2
103	Convalescent plasma levels of TAFI activation peptide predict death and recurrent vascular events in ischemic stroke survivors. Journal of Thrombosis and Haemostasis, 2012, 10, 725-727.	3.8	14
104	Increased zymogen activity of thrombinâ€activatable fibrinolysis inhibitor prolongs clot lysis. Journal of Thrombosis and Haemostasis, 2012, 10, 1091-1099.	3.8	8
105	High Levels of Thrombin Activatable Fibrinolysis Inhibitor and Plasminogen Activator Inhibitor Are a Risk Factor for Thromboembolism: A Case-Control Study in IBD Patients. Gastroenterology, 2011, 140, S-435-S-436.	1.3	0
106	Development of an immunological toolbox to detect endogenous and exogenous pectin methylesterase in plant-based food products. Food Research International, 2011, 44, 931-939.	6.2	3
107	Activation of the Zymogen to Urokinase-Type Plasminogen Activator Is Associated with Increased Interdomain Flexibility. Journal of Molecular Biology, 2011, 411, 417-429.	4.2	12
108	High thrombin activatable fibrinolysis inhibitor levels are associated with an increased risk of premature peripheral arterial disease. Thrombosis Research, 2011, 127, 254-258.	1.7	16

#	Article	IF	CITATIONS
109	Characterization of a panel of monoclonal antibodies toward mouse PAI-1 that exert a significant profibrinolytic effect in vivo. Thrombosis Research, 2011, 128, 68-76.	1.7	15
110	Identification and characterisation of monoclonal antibodies that impair the activation of human thrombin activatable fibrinolysis inhibitor through different mechanisms. Thrombosis and Haemostasis, 2011, 106, 90-101.	3.4	20
111	Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies. Biochemical Journal, 2011, 438, 39-51.	3.7	14
112	Evaluation of the profibrinolytic properties of an anti-TAFI monoclonal antibody in a mouse thromboembolism model. Blood, 2011, 117, 4615-4622.	1.4	36
113	TAFIa inhibiting nanobodies as profibrinolytic tools and discovery of a new TAFIa conformation. Journal of Thrombosis and Haemostasis, 2011, 9, 2268-2277.	3.8	21
114	Advances in understanding pectin methylesterase inhibitor in kiwi fruit: an immunological approach. Planta, 2011, 233, 287-298.	3.2	10
115	Identification of a bacterial inhibitor against g-type lysozyme. Cellular and Molecular Life Sciences, 2011, 68, 1053-1064.	5.4	48
116	Use of Mouse Models to Study Plasminogen Activator Inhibitor-1. Methods in Enzymology, 2011, 499, 77-104.	1.0	10
117	Urokinase-Type Plasminogen Activator Promotes Paracellular Transmigration of Neutrophils Via Mac-1, But Independently of Urokinase-Type Plasminogen Activator Receptor. Circulation, 2011, 124, 1848-1859.	1.6	40
118	Thrombin activatable fibrinolysis inhibitor. Hamostaseologie, 2011, 31, 165-173.	1.9	29
119	Lysozyme inhibitor conferring bacterial tolerance to invertebrate type lysozyme. Cellular and Molecular Life Sciences, 2010, 67, 1177-1188.	5.4	39
120	Plant pectin methylesterase and its inhibitor from kiwi fruit: Interaction analysis by surface plasmon resonance. Food Chemistry, 2010, 121, 207-214.	8.2	23
121	Generation and characterization of inhibitory nanobodies towards thrombin activatable fibrinolysis inhibitor. Journal of Thrombosis and Haemostasis, 2010, 8, 1302-1312.	3.8	40
122	Biosimilars: controversies as illustrated by rhGH. Current Medical Research and Opinion, 2010, 26, 1219-1229.	1.9	30
123	Subtle structural differences between human and mouse PAI-1 reveal the basis for biochemical differences. Journal of Structural Biology, 2010, 171, 95-101.	2.8	21
124	Monoclonal antibodies: indications, budget impact and use. Journal of Pharmaceutical Health Services Research, 2010, 1, 123-130.	0.6	1
125	Species-dependent molecular drug targets in plasminogen activator inhibitor-1 (PAI-1). Thrombosis and Haemostasis, 2009, 102, 609-610.	3.4	8
126	Comparative study of inhibitory antibody derivatives towards thrombin activatable fibrinolysis inhibitor. Thrombosis and Haemostasis, 2009, 102, 69-75.	3.4	7

#	Article	IF	CITATIONS
127	The Roles of Selected Arginine and Lysine Residues of TAFI (Pro-CPU) in Its Activation to TAFIa by the Thrombin-Thrombomodulin Complex. Journal of Biological Chemistry, 2009, 284, 7059-7067.	3.4	24
128	Development and evaluation of monoclonal antibodies as probes to assess the differences between two tomato pectin methylesterase isoenzymes. Journal of Immunological Methods, 2009, 349, 18-27.	1.4	14
129	Effect of Reteplaseâ,,¢ and PAI-1 antibodies on postoperative adhesion formation in a laparoscopic mouse model. Surgical Endoscopy and Other Interventional Techniques, 2009, 23, 1018-1025.	2.4	6
130	Activated thrombin activatable fibrinolysis inhibitor levels are associated with the risk of cardiovascular death in patients with coronary artery disease: the AtheroGene study. Journal of Thrombosis and Haemostasis, 2009, 7, 49-57.	3.8	169
131	The role of thrombin activatable fibrinolysis inhibitor in arterial thrombosis at a young age: the ATTAC study. Journal of Thrombosis and Haemostasis, 2009, 7, 919-927.	3.8	63
132	High quality structure of cleaved PAI-1-stab. Journal of Structural Biology, 2009, 165, 126-132.	2.8	16
133	Conformational (in)stability of rat vs. human activated thrombin activatable fibrinolysis inhibitor. Journal of Thrombosis and Haemostasis, 2008, 6, 1426-1428.	3.8	3
134	Discovery of novel mechanisms and molecular targets for the inhibition of activated thrombin activatable fibrinolysis inhibitor. Journal of Thrombosis and Haemostasis, 2008, 6, 1892-1899.	3.8	21
135	Bispecific targeting of thrombin activatable fibrinolysis inhibitor and plasminogen activator inhibitor-1 by a heterodimer diabody. Journal of Thrombosis and Haemostasis, 2008, 6, 1884-1891.	3.8	18
136	Redirection of the reaction between activated protein C and a serpin to the substrate pathway. Thrombosis Research, 2008, 122, 397-404.	1.7	13
137	A Peptide Accelerating the Conversion of Plasminogen Activator Inhibitor-1 to an Inactive Latent State. Molecular Pharmacology, 2008, 74, 641-653.	2.3	23
138	Biochemical Importance of Glycosylation in Thrombin Activatable Fibrinolysis Inhibitor. Circulation Research, 2008, 102, 295-301.	4.5	22
139	Thrombin activatable fibrinolysis inhibitor is associated with severity and outcome of severe meningococcal infection in children. Journal of Thrombosis and Haemostasis, 2008, 6, 268-276.	3.8	15
140	Modulation of Serpin Reaction through Stabilization of Transient Intermediate by Ligands Bound to α-Helix F. Journal of Biological Chemistry, 2007, 282, 26306-26315.	3.4	16
141	Thrombin Activatable Fibrinolysis Inhibitor Activation Peptide Shows Association With All Major Subtypes of Ischemic Stroke and With TAFI Gene Variation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 955-962.	2.4	62
142	Biotherapeutics in the Era of Biosimilars. Drug Safety, 2007, 30, 1087-1092.	3.2	25
143	Announcing a TAFIa mutant with a 180-fold increased half-life and concomitantly a strongly increased antifibrinolytic potential. Journal of Thrombosis and Haemostasis, 2007, 5, 418-420.	3.8	23
144	Reactive site-dependent phenotypic alterations in plasminogen activator inhibitor-1 transgenic mice. Journal of Thrombosis and Haemostasis, 2007, 5, 1500-1508.	3.8	27

#	Article	IF	CITATIONS
145	Comparative evaluation of stable TAFIa variants: importance of αâ€helix 9 and βâ€sheet 11 for TAFIa (in)stability. Journal of Thrombosis and Haemostasis, 2007, 5, 2105-2112.	3.8	14
146	Study of Recombinant Antibody Fragments and PAI-1 Complexes Combining Protein-Protein Docking and Results from Site-Directed Mutagenesis. Structure, 2007, 15, 1105-1116.	3.3	7
147	Study of Recombinant Antibody Fragments and PAI-1 Complexes Combining Protein-Protein Docking and Results from Site-Directed Mutagenesis. Structure, 2007, 15, 1339.	3.3	1
148	Characterization of rat thrombin-activatable fibrinolysis inhibitor (TAFI) - a comparative study assessing the biological equivalence of rat, murine and human TAFI. Journal of Thrombosis and Haemostasis, 2006, 4, 2470-2477.	3.8	22
149	Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. Journal of Immunological Methods, 2006, 312, 167-181.	1.4	144
150	Development of ELISAs Measuring the Extent of TAFI Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 423-428.	2.4	37
151	Plasminogen activator inhibitor-1 modulates adipocyte differentiation. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E103-E113.	3.5	113
152	Evidence for a Pre-latent Form of the Serpin Plasminogen Activator Inhibitor-1 with a Detached β-Strand 1C. Journal of Biological Chemistry, 2006, 281, 36071-36081.	3.4	38
153	Generation of a Stable Activated Thrombin Activable Fibrinolysis Inhibitor Variant. Journal of Biological Chemistry, 2006, 281, 15878-15883.	3.4	26
154	Quantitation of Vervet Monkey (Chlorocebus aethiops) plasminogen activator inhibitor-1 in plasma and platelets. Thrombosis and Haemostasis, 2006, 95, 902-903.	3.4	5
155	Platelet activation and high tissue factor level predict acute stent thrombosis in pig coronary arteries: Prothrombogenic response of drug-eluting or bare stent implantation within the first 24 hours. Thrombosis and Haemostasis, 2006, 96, 202-209.	3.4	17
156	Quantitation of Vervet monkey (Chlorocebus aethiops) plasminogen activator inhibitor-1 in plasma and platelets. Thrombosis and Haemostasis, 2006, 95, 902-3.	3.4	2
157	Modulation of TAFI function through different pathways - implications for the development of TAFI inhibitors. Journal of Thrombosis and Haemostasis, 2005, 3, 2745-2753.	3.8	43
158	His374 of wheat endoxylanase inhibitor TAXI-I stabilizes complex formation with glycoside hydrolase family 11 endoxylanases. FEBS Journal, 2005, 272, 5872-5882.	4.7	30
159	Additivity in Effects of Vitronectin and Monoclonal Antibodies against α-Helix F of Plasminogen Activator Inhibitor-1 on Its Reactions with Target Proteinases. Journal of Biological Chemistry, 2005, 280, 1482-1489.	3.4	21
160	Function-Stabilizing Mechanism of Plasminogen Activator Inhibitor Type 1 Induced upon Binding to α1-Acid Glycoproteinâ€. Biochemistry, 2005, 44, 12384-12390.	2.5	14
161	The Conversion of Active to Latent Plasminogen Activator Inhibitor-1 Is an Energetically Silent Event. Biophysical Journal, 2005, 88, 2848-2854.	0.5	11
162	Enhancement of endogenous fibrinolysis does not reduce local fibrin deposition, but modulates inflammation upon intestinal ischemia and reperfusion. Thrombosis and Haemostasis, 2004, 91, 497-505.	3.4	15

#	Article	IF	CITATIONS
163	The structural basis for the pathophysiological relevance of PAI-1 in cardiovascular diseases and the development of potential PAI-1 inhibitors. Thrombosis and Haemostasis, 2004, 91, 425-437.	3.4	91
164	Plasminogen Activator Inhibitor-1. Current Medicinal Chemistry, 2004, 11, 2323-2334.	2.4	75
165	Site-directed Targeting of Plasminogen Activator Inhibitor-1 as an Example for a Novel Approach in Rational Drug Design. Journal of Biological Chemistry, 2004, 279, 20447-20450.	3.4	3
166	Protonation State of a Single Histidine Residue Contributes Significantly to the Kinetics of the Reaction of Plasminogen Activator Inhibitor-1 with Tissue-type Plasminogen Activator. Journal of Biological Chemistry, 2004, 279, 23007-23013.	3.4	8
167	Migration of the activation peptide of thrombin-activatable fibrinolysis inhibitor (TAFI) during SDS-polyacrylamide gel electrophoresis. Journal of Thrombosis and Haemostasis, 2004, 2, 780-784.	3.8	15
168	Cloning and paratope analysis of an antibody fragment, a rational approach for the design of a PAI-1 inhibitor. Journal of Thrombosis and Haemostasis, 2004, 2, 289-297.	3.8	7
169	Inhibition of plasminogen activator inhibitor-1: antibody fragments and their unique sequences as a tool for the development of profibrinolytic drugs. Journal of Thrombosis and Haemostasis, 2004, 2, 298-305.	3.8	12
170	Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene, 2004, 23, 6986-6990.	5.9	151
171	The story of the serpin plasminogen activator inhibitor 1: is there any need for another mutant?. Thrombosis and Haemostasis, 2004, 92, 898-924.	3.4	28
172	Realization and Characterization of Porous Gold for Increased Protein Coverage on Acoustic Sensors. Analytical Chemistry, 2004, 76, 4299-4306.	6.5	111
173	Comparative analysis of the proteinase specificity in wild-type and stabilized plasminogen activator inhibitor-1: evidence for contribution of intramolecular flexibility. Biochemical and Biophysical Research Communications, 2004, 321, 746-751.	2.1	1
174	Elucidation of a novel epitope of a substrate-inducing monoclonal antibody against the serpin PAI-1. Journal of Thrombosis and Haemostasis, 2003, 1, 1028-1033.	3.8	17
175	Structural determinants in the stability of the serpin/proteinase complex. Biochemical and Biophysical Research Communications, 2003, 307, 529-534.	2.1	5
176	Tryptophan Properties in Fluorescence and Functional Stability of Plasminogen Activator Inhibitor 1. Biophysical Journal, 2003, 85, 501-510.	0.5	15
177	Immobilization of the Distal Hinge in the Labile Serpin Plasminogen Activator Inhibitor 1. Journal of Biological Chemistry, 2003, 278, 23899-23905.	3.4	14
178	Development of a Genotype 325–Specific proCPU/TAFI ELISA. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1122-1127.	2.4	79
179	Biochemical importance of glycosylation of plasminogen activator inhibitor-1. Thrombosis and Haemostasis, 2003, 90, 206-217.	3.4	46
180	Elucidation of the paratope of scFv-8H9D4, a PAI-1 neutralizing antibody derivative. Thrombosis and Haemostasis, 2003, 89, 74-82.	3.4	5

#	Article	IF	CITATIONS
181	Elucidation of the epitope of a latency-inducing antibody: identification of a new molecular target for PAI-1 inhibition. Thrombosis and Haemostasis, 2003, 90, 52-58.	3.4	24
182	Dose-Dependent Modulation of Choroidal Neovascularization by Plasminogen Activator Inhibitor Type I: Implications for Clinical Trials. , 2003, 44, 2791.		45
183	Plasminogen Activators Inhibitors. , 2003, , 47-66.		1
184	Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Research, 2003, 63, 1500-7.	0.9	58
185	Elucidation of the epitope of a latency-inducing antibody: identification of a new molecular target for PAI-1 inhibition. Thrombosis and Haemostasis, 2003, 90, 52-8.	3.4	7
186	Mechanisms of Conversion of Plasminogen Activator Inhibitor 1 from a Suicide Inhibitor to a Substrate by Monoclonal Antibodies. Journal of Biological Chemistry, 2002, 277, 43858-43865.	3.4	32
187	Age-Dependent Spontaneous Coronary Arterial Thrombosis in Transgenic Mice That Express a Stable Form of Human Plasminogen Activator Inhibitor-1. Circulation, 2002, 106, 491-496.	1.6	173
188	The pro―or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB Journal, 2002, 16, 147-154.	0.5	260
189	Enhanced expression of plasminogen activator inhibitor-1 by dedifferentiated thyrocytes. Biochemical and Biophysical Research Communications, 2002, 295, 737-743.	2.1	11
190	Characterization and Comparative Evaluation of a Novel PAI-1 Inhibitor. Thrombosis and Haemostasis, 2002, 88, 137-143.	3.4	30
191	Importance of N-Terminal Residues in Plasminogen Activator Inhibitor 1 on its Antibody Induced Latency Transition. Thrombosis and Haemostasis, 2002, 88, 288-293.	3.4	16
192	Reciprocal regulation of tissue-type and urokinase-type plasminogen activators in the differentiation of murine preadipocyte line 3T3-L1 and the hormonal regulation of fibrinolytic factors in the mature adipocytes. Journal of Cellular Physiology, 2001, 189, 72-78.	4.1	31
193	Extending the capabilities of targeted molecular dynamics: Simulation of a large conformational transition in plasminogen activator inhibitor 1. Protein Science, 2001, 10, 798-808.	7.6	38
194	The Distal Hinge of the Reactive Site Loop and Its Proximity. Journal of Biological Chemistry, 2001, 276, 44912-44918.	3.4	35
195	Identification of a Target Site in Plasminogen Activator Inhibitor-1 That Allows Neutralization of Its Inhibitory Properties Concomitant with an Allosteric Up-regulation of Its Antiadhesive Properties. Journal of Biological Chemistry, 2001, 276, 26243-26248.	3.4	23
196	The importance of helix F in plasminogen activator inhibitor-1. BBA - Proteins and Proteomics, 2000, 1476, 20-26.	2.1	20
197	Immunoassays for the Quantitation of Porcine PAI-1 Antigen and Activity in Biological Fluid Samples. Thrombosis and Haemostasis, 2000, 84, 1082-1086.	3.4	7
198	Effect of Stabilizing versus Destabilizing Interactions on Plasminogen Activator Inhibitor-1. Thrombosis and Haemostasis, 2000, 84, 871-875.	3.4	21

#	Article	IF	CITATIONS
199	Prevention of Renal Fibrin Deposition in Endotoxin-induced DIC through Inhibition of PAI-1. Thrombosis and Haemostasis, 2000, 84, 65-70.	3.4	59
200	Inactivation of Plasminogen Activator Inhibitor-1 by Specific Proteolysis with Stromelysin-1 (MMP-3). Journal of Biological Chemistry, 2000, 275, 37645-37650.	3.4	52
201	Importance of the Hinge Region between α-Helix F and the Main Part of Serpins, Based upon Identification of the Epitope of Plasminogen Activator Inhibitor Type 1 Neutralizing Antibodies. Journal of Biological Chemistry, 2000, 275, 6375-6380.	3.4	50
202	Plasminogen activator inhibitor 1. Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation. Journal of Molecular Biology, 2000, 297, 683-695.	4.2	94
203	Glycosylation dependent conformational transitions in plasminogen activator inhibitor-1: evidence for the presence of two active conformations. Fibrinolysis and Proteolysis, 2000, 14, 58-64.	1.1	11
204	Immunological Quantitation of Rabbit Plasminogen Activator Inhibitor-1 in Biological Samples. Thrombosis and Haemostasis, 1999, 82, 1510-1515.	3.4	9
205	Accelerated Conversion of Human Plasminogen Activator Inhibitor-1 to Its Latent Form by Antibody Binding. Journal of Biological Chemistry, 1999, 274, 17511-17517.	3.4	67
206	Plasminogen activator inhibitor 1 (PAI-1) in its active conformation: crystallization and preliminary X-ray diffraction data. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 574-576.	2.5	3
207	Induction of conformational changes within crystals of plasminogen activator inhibitor-1 (PAI-1). Fibrinolysis and Proteolysis, 1999, 13, 203-207.	1.1	2
208	Hormonal Control of Plasminogen Activator Inhibitor-1 Gene Expression and Production in Human Adipose Tissue: Stimulation by Glucocorticoids and Inhibition by Catecholamines. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4097-4105.	3.6	74
209	Characterization of plasminogen activator inhibitor 1 mutants containing the P13 to P10 region of ovalbumin or antithrombin III: evidence that the P13 residue contributes significantly to the active to substrate transition. BBA - Proteins and Proteomics, 1998, 1387, 291-297.	2.1	11
210	Activation of both coagulation and fibrinolysis in childhood hemolytic uremic syndrome. Kidney International, 1998, 54, 1324-1330.	5.2	39
211	Evaluation of the mechanism of inactivation of plasminogen activator inhibitor-1 by monoclonal antibodies using a stable variant. Fibrinolysis and Proteolysis, 1998, 12, 277-282.	1.1	17
212	Suppression of plasminogen activator inhibitor 1 (PAI-1) activity levels in rats by monoclonal antibodies. Fibrinolysis and Proteolysis, 1998, 12, 335-339.	1.1	7
213	Identification of a Functional Epitope in Plasminogen Activator Inhibitor-1, not Localized in the Reactive Center Loop. Thrombosis and Haemostasis, 1998, 79, 597-601.	3.4	28
214	Modulation of Plasminogen Activator Inhibitor 1 by Triton X-100 – Identification of Two Consecutive Conformational Transitions. Thrombosis and Haemostasis, 1998, 80, 286-291.	3.4	58
215	Proteinase Specificity and Functional Diversity in Point Mutants of Plasminogen Activator Inhibitor 1. Journal of Biological Chemistry, 1997, 272, 12662-12666.	3.4	37
216	Rational Design of Complex Formation between Plasminogen Activator Inhibitor-1 and Its Target Proteinases. Journal of Structural Biology, 1997, 118, 236-242.	2.8	15

#	Article	IF	CITATIONS
217	Identification of positively charged residues contributing to the stability of plasminogen activator inhibitor 1. FEBS Letters, 1997, 415, 192-195.	2.8	18
218	Identification of functional synergism between monoclonal antibodies. Application to the enhancement of plasminogen activator inhibitor-1 neutralizing effects. FEBS Letters, 1997, 416, 373-376.	2.8	8
219	Expression, purification, and characterization of recombinant rat plasminogen activator inhibitor-1. Fibrinolysis and Proteolysis, 1997, 11, 37-43.	1.1	7
220	Construction and characterization of plasminogen activator inhibitor-1 mutants in which part of the active site loop is deleted. Fibrinolysis and Proteolysis, 1997, 11, 265-271.	1.1	2
221	Cloning of a single-chain variable fragment (scFv) switching active plasminogen activator inhibitor-1 to substrate. Gene, 1997, 189, 83-88.	2.2	13
222	Neutralization of plasminogen activator inhibitor-1 inhibitory properties: identification of two different mechanisms. BBA - Proteins and Proteomics, 1997, 1337, 257-266.	2.1	70
223	Bioavailability of different artemisinin tablet formulations in rabbit plasma—correlation with results obtained by an in vitro dissolution method. Journal of Pharmaceutical and Biomedical Analysis, 1997, 16, 185-189.	2.8	11
224	Substrate Behavior of Plasminogen Activator Inhibitor-1 Is Not Associated with a Lack of Insertion of the Reactive Site Loopâ€. Biochemistry, 1996, 35, 7474-7481.	2.5	81
225	Various approaches to standardization and the importance of measurement accuracy. Fibrinolysis, 1996, 10, 113-116.	0.5	0
226	Recombinant Staphylokinase Variants With Altered Immunoreactivity. Circulation, 1996, 94, 197-206.	1.6	56
227	4 Pathophysiology of fibrinolysis. Best Practice and Research: Clinical Haematology, 1995, 8, 329-343.	1.1	19
228	Crystallization and X-ray diffraction data of the cleaved form of plasminogen activator inhibitor-1. Proteins: Structure, Function and Bioinformatics, 1995, 23, 118-121.	2.6	23
229	Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1. Nature Structural Biology, 1995, 2, 891-897.	9.7	104
230	Generation of Monoclonal Antibodies against Autologous Proteins in Gene-inactivated Mice. Journal of Biological Chemistry, 1995, 270, 8397-8400.	3.4	46
231	Conformational Studies on Plasminogen Activator Inhibitor (PAI-1) in Active, Latent, Substrate, and Cleaved Forms. Biochemistry, 1995, 34, 1064-1069.	2.5	56
232	Characterization of common neoantigenic epitopes generated in plasminogen activator inhibitor-1 after cleavage of the reactive center loop or after complex formation with various serine proteinases. FEBS Letters, 1995, 376, 243-246.	2.8	25
233	Immunoassay of Murine t-PA, u-PA and PAI-1 Using Monoclonal Antibodies Raised in Gene-inactivated Mice. Thrombosis and Haemostasis, 1995, 74, 1305-1309.	3.4	90
234	An echistatin-like Arg-Gly-Asp (RGD)-containing sequence in the heavy chain CDR3 of a murine monoclonal antibody that inhibits human platelet glycoprotein IIb/IIIa function. British Journal of Haematology, 1994, 87, 562-571.	2.5	36

#	Article	IF	CITATIONS
235	Conformational studies on forms of plasminogen activator inhibitor, PAI-1. Fibrinolysis, 1994, 8, 17.	0.5	2
236	A model of the active form of plasminogen-activator-inhibitor-1. Fibrinolysis, 1994, 8, 103.	0.5	0
237	A Model of the Reactive Form of Plasminogen Activator Inhibitor-1. Journal of Structural Biology, 1994, 113, 239-245.	2.8	26
238	Dynamic structural and functional relationships in recombinant plasminogen activator inhibitor-1 (rPAI-1). BBA - Proteins and Proteomics, 1993, 1202, 221-229.	2.1	26
239	Immunological methods to study the fibrinolytic system. Fibrinolysis, 1993, 7, 9-10.	0.5	5
240	Influence of oral intake of retinoids on the human plasma fibrinolytic system. Fibrinolysis, 1993, 7, 347-351.	0.5	10
241	Comparative thrombolytic and immunogenic properties of staphylokinase and streptokinase. Fibrinolysis, 1992, 6, 232-242.	0.5	57
242	Induction of t-PA Synthesis with intravenous bolus injection of vitamin A palmitate in vitamin a deficient rats. Fibrinolysis, 1992, 6, 243-249.	0.5	8
243	An Enzyme-Linked Immunosorbent Assay for Urokinase-Type Plasminogen Activator (u-PA) and Mutants and Chimeras Containing the Serine Protease Domain of u-PA. Thrombosis and Haemostasis, 1992, 67, 095-100.	3.4	21
244	Molecular forms of plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (t-PA) in human plasma. Thrombosis Research, 1991, 62, 275-285.	1.7	18
245	Correlations between t-PA and PAI-1 antigen and activity and t-PA/PAI-1 complexes in plasma of control subjects and of patients with increased t-PA or PAI-1 levels. Thrombosis Research, 1990, 60, 509-516.	1.7	49
246	Measurement of different forms of plasminogen activator inhibitor 1(PAI-1) using various monoclonal antibody-based enzyme-linked immunosorbent assays. Fibrinolysis, 1990, 4, 132-133.	0.5	21
247	Recombinant plasminogen activator inhibitor-1 reverses the bleeding tendency associated with the combined administration of tissue-type plasminogen activator and aspirin in rabbits Journal of Clinical Investigation, 1989, 84, 586-591.	8.2	31
248	Purification and characterization of natural and recombinant human plasminogen activator inhibitor-1 (PAI-1). FEBS Journal, 1988, 175, 531-540.	0.2	75
249	Hydrogenosomal ATP: AMP phosphotransferase of Trichomonas vaginalis. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 88, 575-580.	0.2	9
250	Polarographic evidence for the interaction of reduced nitroimidazole derivatives with DNA bases. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 257.	1.0	23
251	In vitro reductive activation of nitroimidazoles. Biochemical Pharmacology, 1986, 35, 59-61.	4.4	38
252	Base specific interaction of reductively activated nitroimidazoles with DNA. FEBS Letters, 1983, 164, 145-148.	2.8	22

#	Article	IF	CITATIONS
253	A European perspective on the market accessibility of biosimilars. Biosimilars (Auckland, New Zealand), 0, , 33.	0.4	34