
Jonathan Chou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7783045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remodelling the extracellular matrix in development and disease. Nature Reviews Molecular Cell Biology, 2014, 15, 786-801.	37.0	3,082
2	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	28.9	459
3	Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell, 2018, 173, 1770-1782.e14.	28.9	400
4	GATA3 suppresses metastasis and modulates the tumour microenvironment by regulatingÂmicroRNA-29b expression. Nature Cell Biology, 2013, 15, 201-213.	10.3	322
5	GATA3 in development and cancer differentiation: Cells GATA have it!. Journal of Cellular Physiology, 2010, 222, 42-49.	4.1	261
6	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	21.4	198
7	Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy. Cancer Discovery, 2020, 10, 351-370.	9.4	162
8	microRNA-mediated regulation of the tumor microenvironment. Cell Cycle, 2013, 12, 3262-3271.	2.6	117
9	HIF signaling in osteoblast-lineage cells promotes systemic breast cancer growth and metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E992-E1001.	7.1	74
10	Clinical Outcomes in Cyclin-dependent Kinase 12 Mutant Advanced Prostate Cancer. European Urology, 2020, 77, 333-341.	1.9	65
11	Heterogeneity in <i>NECTIN4</i> Expression Across Molecular Subtypes of Urothelial Cancer Mediates Sensitivity to Enfortumab Vedotin. Clinical Cancer Research, 2021, 27, 5123-5130.	7.0	65
12	MMP9 modulates the metastatic cascade and immune landscape for breast cancer anti-metastatic therapy. Life Science Alliance, 2019, 2, e201800226.	2.8	61
13	Clinical and Genomic Implications of Luminal and Basal Subtypes Across Carcinomas. Clinical Cancer Research, 2019, 25, 2450-2457.	7.0	52
14	MicroRNAs Play a Big Role in Regulating Ovarian Cancer–Associated Fibroblasts and the Tumor Microenvironment. Cancer Discovery, 2012, 2, 1078-1080.	9.4	35
15	TROP2 Expression Across Molecular Subtypes of Urothelial Carcinoma and Enfortumab Vedotin-resistant Cells. European Urology Oncology, 2022, 5, 714-718.	5.4	32
16	The Transcriptional Repressor ZNF503/Zeppo2 Promotes Mammary Epithelial Cell Proliferation and Enhances Cell Invasion. Journal of Biological Chemistry, 2015, 290, 3803-3813.	3.4	29
17	Efficacy of enfortumab vedotin in advanced urothelial cancer: Analysis from the Urothelial Cancer Network to Investigate Therapeutic Experiences (UNITE) study. Cancer, 2022, 128, 1194-1205.	4.1	26
18	Metalloproteinases: a Functional Pathway for Myeloid Cells. Microbiology Spectrum, 2016, 4, .	3.0	20

JONATHAN CHOU

#	Article	IF	CITATIONS
19	Molecular Imaging of Prostate Cancer Targeting CD46 Using ImmunoPET. Clinical Cancer Research, 2021, 27, 1305-1315.	7.0	18
20	An integrated functional and clinical genomics approach reveals genes driving aggressive metastatic prostate cancer. Nature Communications, 2021, 12, 4601.	12.8	18
21	DNA-Dependent Protein Kinase Drives Prostate Cancer Progression through Transcriptional Regulation of the Wnt Signaling Pathway. Clinical Cancer Research, 2019, 25, 5608-5622.	7.0	17
22	Differential treatment outcomes in <i>BRCA1/2</i> â€; <i>CDK12</i> â€; and <i>ATM</i> â€mutated metastatic castrationâ€resistant prostate cancer. Cancer, 2021, 127, 1965-1973.	4.1	15
23	Prostate-specific Membrane Antigen and Fluciclovine Transporter Genes are Associated with Variable Clinical Features and Molecular Subtypes of Primary Prostate Cancer. European Urology, 2021, 79, 717-721.	1.9	13
24	Autoantibody Landscape in Patients with Advanced Prostate Cancer. Clinical Cancer Research, 2020, 26, 6204-6214.	7.0	10
25	CUB Domain-Containing Protein 1 (CDCP1) Is a Target for Radioligand Therapy in Castration-Resistant Prostate Cancer, including PSMA Null Disease. Clinical Cancer Research, 2022, 28, 3066-3075.	7.0	10
26	Prostate cancer in the era of "Omic―medicine: recognizing the importance of DNA damage repair pathways. Annals of Translational Medicine, 2018, 6, 161-161.	1.7	7
27	Molecular Insights in Transmission of Cancer From an Organ Donor to Four Transplant Recipients. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 1446-1452.	4.9	2
28	Respiratory Failure in a Woman 8 Months After an Allogeneic Stem Cell Transplant. JAMA Oncology, 2016, 2, 1651.	7.1	1
29	Electrocardiography Evolution in a Woman Presenting With Alcohol Withdrawal Seizures and Cocaine Use. JAMA Internal Medicine, 2016, 176, 693.	5.1	1

30 Metalloproteinases: a Functional Pathway for Myeloid Cells. , 0, , 649-658.

0