Erinna F Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7782099/publications.pdf

Version: 2024-02-01

68 papers

10,743 citations

38 h-index 98798 67 g-index

72 all docs 72 docs citations

times ranked

72

19743 citing authors

#	Article	IF	CITATIONS
1	The role of BCL-2 family proteins and therapeutic potential of BH3-mimetics in malignant pleural mesothelioma. Expert Review of Anticancer Therapy, 2021, 21, 413-424.	2.4	9
2	Influenza A virus infectionâ€induced macroautophagy facilitates MHC class IIâ€restricted endogenous presentation of an immunodominant viral epitope. FEBS Journal, 2021, 288, 3164-3185.	4.7	6
3	Optimization of Benzothiazole and Thiazole Hydrazones as Inhibitors of Schistosome BCL-2. ACS Infectious Diseases, 2021, 7, 1143-1163.	3.8	3
4	Co-Operativity between MYC and BCL-2 Pro-Survival Proteins in Cancer. International Journal of Molecular Sciences, 2021, 22, 2841.	4.1	17
5	A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma. Cell Death Discovery, 2021, 7, 122.	4.7	23
6	BECLIN1: Protein Structure, Function and Regulation. Cells, 2021, 10, 1522.	4.1	57
7	Discovery, development and application of drugs targeting BCL-2 pro-survival proteins in cancer. Biochemical Society Transactions, 2021, 49, 2381-2395.	3.4	9
8	Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers. Biochemical Society Transactions, 2021, 49, 2397-2410.	3 . 4	11
9	Characterization of a novel human BFL-1-specific monoclonal antibody. Cell Death and Differentiation, 2020, 27, 826-828.	11.2	2
10	Diversity in the intrinsic apoptosis pathway of nematodes. Communications Biology, 2020, 3, 478.	4.4	4
11	BCL-XL is an actionable target for treatment of malignant pleural mesothelioma. Cell Death Discovery, 2020, 6, 114.	4.7	13
12	Crosstalk between apoptosis and autophagy signaling pathways. International Review of Cell and Molecular Biology, 2020, 352, 115-158.	3.2	51
13	A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis. Nature Chemical Biology, 2019, 15, 1057-1066.	8.0	30
14	The Structural Biology of Bcl-xL. International Journal of Molecular Sciences, 2019, 20, 2234.	4.1	44
15	BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death and Disease, 2019, 10, 342.	6.3	125
16	Structural insights into BCL2 pro-survival protein interactions with the key autophagy regulator BECN1 following phosphorylation by STK4/MST1. Autophagy, 2019, 15, 785-795.	9.1	38
17	Mcl-1 and Bcl-xL sequestration of Bak confers differential resistance to BH3-only proteins. Cell Death and Differentiation, 2018, 25, 721-734.	11.2	44
18	ATF3 Repression of BCL-XL Determines Apoptotic Sensitivity to HDAC Inhibitors across Tumor Types. Clinical Cancer Research, 2017, 23, 5573-5584.	7.0	46

#	Article	IF	CITATIONS
19	Conversion of Bim-BH3 from Activator to Inhibitor of Bak through Structure-Based Design. Molecular Cell, 2017, 68, 659-672.e9.	9.7	57
20	Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. ELife, $2016,5,.$	6.0	65
21	MCL-1 inhibition provides a new way to suppress breast cancer metastasis and increase sensitivity to dasatinib. Breast Cancer Research, 2016, 18, 125.	5.0	60
22	BAX-BAK1-independent LC3B lipidation by BH3 mimetics is unrelated to BH3 mimetic activity and has only minimal effects on autophagic flux. Autophagy, 2016, 12, 1083-1093.	9.1	16
23	Physiological restraint of Bak by Bcl-x _L is essential for cell survival. Genes and Development, 2016, 30, 1240-1250.	5.9	40
24	The BECN1ÂN-terminal domain is intrinsically disordered. Autophagy, 2016, 12, 460-471.	9.1	21
25	Hepatocyte growth factor renders BRAF mutant human melanoma cell lines resistant to PLX4032 by downregulating the pro-apoptotic BH3-only proteins PUMA and BIM. Cell Death and Differentiation, 2016, 23, 2054-2062.	11.2	24
26	Characterisation of the conformational preference and dynamics of the intrinsically disordered N-terminal region of Beclin 1 by NMR spectroscopy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1128-1137.	2.3	5
27	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
28	Repurposing apoptosis-inducing cancer drugs to treat schistosomiasis. Future Medicinal Chemistry, 2015, 7, 707-711.	2.3	10
29	Prosurvival Bcl-2 family members reveal a distinct apoptotic identity between conventional and plasmacytoid dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4044-4049.	7.1	43
30	Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax. Cell Death and Disease, 2015, 6, e1735-e1735.	6.3	76
31	A transgenic mouse model to inducibly target prosurvival Bcl2 proteins with selective BH3 peptides in vivo. Cell Death and Disease, 2015, 6, e1679-e1679.	6.3	1
32	Residue-Based Preorganization of BH3-Derived $ \hat{\mathbf{r}} ^2$ -Peptides: Modulating Affinity, Selectivity and Proteolytic Susceptibility in $\hat{\mathbf{r}}$ -Helix Mimics. ACS Chemical Biology, 2015, 10, 1667-1675.	3 . 4	40
33	α∫β-Peptide Foldamers Targeting Intracellular Protein–Protein Interactions with Activity in Living Cells. Journal of the American Chemical Society, 2015, 137, 11365-11375.	13.7	101
34	The Functional Differences between Pro-survival and Pro-apoptotic B Cell Lymphoma 2 (Bcl-2) Proteins Depend on Structural Differences in Their Bcl-2 Homology 3 (BH3) Domains. Journal of Biological Chemistry, 2014, 289, 36001-36017.	3.4	33
35	Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in <i>p53</i> . Genes and Development, 2014, 28, 58-70.	5.9	156
36	Apoptosis in schistosomes: toward novel targets for the treatment of schistosomiasis. Trends in Parasitology, 2014, 30, 75-84.	3.3	33

#	Article	IF	CITATIONS
37	Structureâ€Guided Rational Design of α∫βâ€Peptide Foldamers with High Affinity for BCLâ€2 Family Prosurvival Proteins. ChemBioChem, 2013, 14, 1564-1572.	2.6	65
38	Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis. Cell, 2013, 152, 519-531.	28.9	491
39	Discovery of Potent and Selective Benzothiazole Hydrazone Inhibitors of Bcl-X _L . Journal of Medicinal Chemistry, 2013, 56, 5514-5540.	6.4	60
40	Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes and Development, 2012, 26, 120-125.	5.9	344
41	Direct visualization of Bcl-2 family protein interactions using live cell fluorescent protein redistribution assays. Cell Death and Disease, 2012, 3, e288-e288.	6.3	11
42	STRUCTURAL BIOLOGY OF THE INTRINSIC CELL DEATH PATHWAY: WHAT DO WE KNOW AND WHAT IS MISSING?. Computational and Structural Biotechnology Journal, 2012, 1, e201204007.	4.1	3
43	Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood, 2012, 119, 5807-5816.	1.4	168
44	Evaluation of Diverse $\hat{l}\pm/\hat{l}^2$ -Backbone Patterns for Functional $\hat{l}\pm$ -Helix Mimicry: Analogues of the Bim BH3 Domain. Journal of the American Chemical Society, 2012, 134, 315-323.	13.7	144
45	Functional genomics approaches in parasitic helminths. Parasite Immunology, 2012, 34, 163-182.	1.5	21
46	Crystal Structure of a BCL-W Domain-Swapped Dimer: Implications for the Function of BCL-2 Family Proteins. Structure, 2011, 19, 1467-1476.	3.3	25
47	Peptide inhibitors of the malaria surface protein, apical membrane antigen 1: Identification of key binding residues. Biopolymers, 2011, 95, 354-364.	2.4	12
48	Structural Basis of Bclâ€x _L Recognition by a BH3â€Mimetic α/βâ€Peptide Generated by Sequenceâ€Based Design. ChemBioChem, 2011, 12, 2025-2032.	2.6	56
49	Mutation to Bax beyond the BH3 Domain Disrupts Interactions with Pro-survival Proteins and Promotes Apoptosis. Journal of Biological Chemistry, 2011, 286, 7123-7131.	3.4	96
50	Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6999-7003.	7.1	53
51	Novel Bcl-2 Homology-3 Domain-like Sequences Identified from Screening Randomized Peptide Libraries for Inhibitors of the Pro-survival Bcl-2 Proteins. Journal of Biological Chemistry, 2009, 284, 31315-31326.	3.4	29
52	Conformational Changes in Bcl-2 Pro-survival Proteins Determine Their Capacity to Bind Ligands. Journal of Biological Chemistry, 2009, 284, 30508-30517.	3.4	79
53	TRAF2 Must Bind to Cellular Inhibitors of Apoptosis for Tumor Necrosis Factor (TNF) to Efficiently Activate NF-ήB and to Prevent TNF-induced Apoptosis. Journal of Biological Chemistry, 2009, 284, 35906-35915.	3.4	202
54	Highâ€Resolution Structural Characterization of a Helical α \hat{I} 2â€Peptide Foldamer Bound to the Antiâ€Apoptotic Protein Bclâ€x _L . Angewandte Chemie - International Edition, 2009, 48, 4318-4322.	13.8	143

#	Article	IF	CITATIONS
55	The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia, 2009, 23, 2034-2041.	7.2	91
56	The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. Journal of Cell Biology, 2009, 186, 355-362.	5.2	164
57	The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. Journal of Experimental Medicine, 2009, 206, i19-i19.	8.5	0
58	Structure of the BH3 Domains from the p53-Inducible BH3-Only Proteins Noxa and Puma in Complex with McI-1. Journal of Molecular Biology, 2008, 380, 958-971.	4.2	178
59	A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. Journal of Cell Biology, 2008, 180, 341-355.	5.2	157
60	Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18081-18087.	7.1	162
61	EGL-1 BH3 mutants reveal the importance of protein levels and target affinity for cell-killing potency. Cell Death and Differentiation, 2008, 15, 1609-1618.	11.2	10
62	Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6217-6222.	7.1	397
63	A Structural Viral Mimic of Prosurvival Bcl-2:ÂAÂPivotal Role for Sequestering ProapoptoticÂBax and Bak. Molecular Cell, 2007, 25, 933-942.	9.7	125
64	Apoptosis Initiated When BH3 Ligands Engage Multiple Bcl-2 Homologs, Not Bax or Bak. Science, 2007, 315, 856-859.	12.6	1,021
65	Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death and Differentiation, 2007, 14, 1711-1713.	11.2	235
66	Binding Hot Spot for Invasion Inhibitory Molecules on Plasmodium falciparum Apical Membrane Antigen 1. Infection and Immunity, 2005, 73, 6981-6989.	2.2	102
67	Affinity Maturation of Leukemia Inhibitory Factor and Conversion to Potent Antagonists of Signaling. Journal of Biological Chemistry, 2004, 279, 2125-2134.	3.4	30
68	Structural Basis for Tetrodotoxin-resistant Sodium Channel Binding by $\hat{l}^{1}\!/\!\!4$ -Conotoxin SmlllA. Journal of Biological Chemistry, 2003, 278, 46805-46813.	3.4	54