

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7782080/publications.pdf Version: 2024-02-01

		71102	106344
186	5,666	41	65
papers	citations	h-index	g-index
192 all docs	192 docs citations	192 times ranked	3813 citing authors

#	Article	IF	CITATIONS
1	Visible and Online Detection of Nearâ€Infrared Optical Vortices via Nonlinear Photonic Crystals. Advanced Optical Materials, 2022, 10, 2101098.	7.3	11
2	Modulation of Chirality and Intensity of Circularly Polarized Luminescence Emitting from Cholesteric Liquid Crystals Triggered by Photoresponsive Molecular Motor. Advanced Optical Materials, 2022, 10, .	7.3	31
3	Analogous Optical Activity in Free Space Using a Single Pancharatnam–Berry Phase Element. Laser and Photonics Reviews, 2022, 16, 2100291.	8.7	15
4	An All-Liquid-Crystal Strategy for Fast Orbital Angular Momentum Encoding and Optical Vortex Steering. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-6.	2.9	1
5	Visible and Online Detection of Nearâ€Infrared Optical Vortices via Nonlinear Photonic Crystals (Advanced Optical Materials 1/2022). Advanced Optical Materials, 2022, 10, .	7.3	0
6	Dynamically Selective and Simultaneous Detection of Spin and Orbital Angular Momenta of Light with Thermoresponsive Self-Assembled Chiral Superstructures. ACS Photonics, 2022, 9, 1050-1057.	6.6	12
7	Broadband spatial polarization processing of light via a photopatterned dichroic medium. Applied Physics Letters, 2022, 120, 041103.	3.3	2
8	Effects of chemically functionalized <scp>TiO₂</scp> nanoparticles on the <scp>UV</scp> â€shielding characteristics of polymerâ€dispersed liquid crystals. Polymers for Advanced Technologies, 2022, 33, 1561-1568.	3.2	10
9	Multifunctional Liquid Crystal Device for Grayscale Pattern Display and Holography with Tunable Spectralâ€Response. Laser and Photonics Reviews, 2022, 16, .	8.7	29
10	Patterned optical anisotropic film for generation of non-diffracting vortex beams. Applied Physics Letters, 2022, 120, .	3.3	2
11	Tunable Circularly Polarized Luminescence with a High Dissymmetry Factor Emitted from Luminogen-Bonded and Electrically Controlled Polymer-Stabilized Cholesteric Liquid Crystals. ACS Applied Materials & Interfaces, 2022, 14, 8490-8498.	8.0	27
12	THz generation by optical rectification of femtosecond laser pulses in a liquid crystal. Journal of the Optical Society of America B: Optical Physics, 2022, 39, A89.	2.1	5
13	Liquid Crystalline Composite Stabilized by Epoxy Polymer with Boscageâ€Like Morphology for Energyâ€Efficient Smart Windows with High Stability. Macromolecular Materials and Engineering, 2022, 307, .	3.6	7
14	Ultrathin flexible terahertz metamaterial bandstop filter based on laser-induced graphene. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1229.	2.1	5
15	Simultaneous Realization of Dynamic and Hybrid Multiplexed Holography via Lightâ€Activated Chiral Superstructures. Laser and Photonics Reviews, 2022, 16, .	8.7	22
16	Transflective spatial terahertz wave modulator. Optics Letters, 2022, 47, 1650.	3.3	7
17	Stability of Impulsive Stochastic Delay Systems with Markovian Switched Delay Effects. Mathematics, 2022, 10, 1110.	2.2	3
18	Polarization-dispersive imaging spectrometer for scattering circular dichroism spectroscopy of single chiral nanostructures. Light: Science and Applications, 2022, 11, 64.	16.6	22

#	Article	IF	CITATIONS
19	Photoâ€Actuated Chiral Smectic Superstructures. Advanced Optical Materials, 2022, 10, .	7.3	3
20	Combined effect of hydroxylated and fluorinated acrylate monomers on improving the electro-optical and mechanical performances of PDLC-films. Liquid Crystals, 2022, 49, 769-779.	2.2	11
21	TiO ₂ doped polymer dispersed and stabilised liquid crystal smart film with high contrast ratio, low driving voltage and short response time. Liquid Crystals, 2022, 49, 1623-1632.	2.2	6
22	Freestanding Helical Nanostructured Chiroâ€Photonic Crystal Film and Anticounterfeiting Label Enabled by a Cholesterolâ€Grafted Lightâ€Driven Molecular Motor. Small Methods, 2022, 6, e2200269.	8.6	32
23	Stochastic Finite-Time Stability for Stochastic Nonlinear Systems with Stochastic Impulses. Symmetry, 2022, 14, 817.	2.2	3
24	Ultralow-power all-optical switching via a chiral Mach-Zehnder interferometer. Optics Express, 2022, 30, 19199.	3.4	3
25	Pancharatnam–Berry phase reversal via opposite-chirality-coexisted superstructures. Light: Science and Applications, 2022, 11, 135.	16.6	28
26	Spinâ€Decoupled Transflective Spatial Light Modulations Enabled by a Piecewiseâ€Twisted Anisotropic Monolayer. Advanced Science, 2022, 9, .	11.2	17
27	Dual-color terahertz spatial light modulator for single-pixel imaging. Light: Science and Applications, 2022, 11, .	16.6	53
28	Flexible Control of Broadband Polarization in a Spintronic Terahertz Emitter Integrated with Liquid Crystal and Metasurface. ACS Applied Materials & Interfaces, 2022, 14, 32646-32656.	8.0	10
29	Electrically Tunable Microlens Array Enabled by Polymer tabilized Smectic Hierarchical Architectures. Advanced Optical Materials, 2022, 10, .	7.3	11
30	Switchable Secondâ€Harmonic Generation of Airy Beam and Airy Vortex Beam. Advanced Optical Materials, 2021, 9, 2001776.	7.3	15
31	Photoalignment enabled liquid crystal microstructures for optics and photonics. Chinese Journal of Liquid Crystals and Displays, 2021, 36, 921-938.	0.3	0
32	Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly. Nature Communications, 2021, 12, 1440.	12.8	38
33	High Efficient Metadevices for Terahertz Beam Shaping. Frontiers in Physics, 2021, 9, .	2.1	4
34	Light-Driven Pitch Tuning of Self-Assembled Hierarchical Gratings. Crystals, 2021, 11, 326.	2.2	2
35	Tunable band-pass optical vortex processor enabled by wash-out-refill chiral superstructures. Applied Physics Letters, 2021, 118, .	3.3	26
36	Electrically Tunable Terahertz Focusing Modulator Enabled by Liquid Crystal Integrated Dielectric Metasurface. Crystals, 2021, 11, 514.	2.2	7

#	Article	IF	CITATIONS
37	Programmable Chromism and Photoluminescence of Spiropyranâ€Based Liquid Crystalline Polymer with Tunable Glass Transition Temperature. Angewandte Chemie, 2021, 133, 19555-19561.	2.0	0
38	Programmable Chromism and Photoluminescence of Spiropyranâ€Based Liquid Crystalline Polymer with Tunable Glass Transition Temperature. Angewandte Chemie - International Edition, 2021, 60, 19406-19412.	13.8	24
39	Programmable self-propelling actuators enabled by a dynamic helical medium. Science Advances, 2021, 7, .	10.3	21
40	47.4: Invited Paper: Softmatter photonics: a strong competitor for planar optics. Digest of Technical Papers SID International Symposium, 2021, 52, 576-576.	0.3	0
41	Achromatic terahertz Airy beam generation with dielectric metasurfaces. Nanophotonics, 2021, 10, 1123-1131.	6.0	27
42	Liquid crystal devices for vector vortex beams manipulation and quantum information applications [Invited]. Chinese Optics Letters, 2021, 19, 112601.	2.9	24
43	Broadband decoupled spin and orbital angular momentum detection via programming dual-twist reactive mesogens. Optics Letters, 2021, 46, 5751-5754.	3.3	6
44	Remotely Controlling Drug Release by Light-Responsive Cholesteric Liquid Crystal Microcapsules Triggered by Molecular Motors. ACS Applied Materials & Interfaces, 2021, 13, 59221-59230.	8.0	13
45	Liquidâ€Crystalâ€Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics. Advanced Materials, 2020, 32, e1903665.	21.0	124
46	Moment exponential stability of stochastic delay systems with delayed impulse effects at random times and applications in the stabilisation of stochastic neural networks. International Journal of Control, 2020, 93, 2505-2515.	1.9	12
47	Broadband Multichannel Optical Vortex Generators via Patterned Double-Layer Reverse-Twist Liquid Crystal Polymer. Crystals, 2020, 10, 882.	2.2	9
48	Spin-controlled massive channels of hybrid-order Poincaré sphere beams. Applied Physics Letters, 2020, 117, .	3.3	11
49	Smectic Defect Engineering Enabled by Programmable Photoalignment. Advanced Optical Materials, 2020, 8, 2000593.	7.3	14
50	Liquidâ€Crystalâ€Mediated Active Waveguides toward Programmable Integrated Optics. Advanced Optical Materials, 2020, 8, 1902033.	7.3	12
51	Planar Terahertz Photonics Mediated by Liquid Crystal Polymers. Advanced Optical Materials, 2020, 8, 1902124.	7.3	31
52	Azobenzene Sulphonic Dye Photoalignment as a Means to Fabricate Liquid Crystalline Conjugated Polymer Chainâ€Orientationâ€Based Optical Structures. Advanced Optical Materials, 2020, 8, 1901958.	7.3	9
53	Liquid crystal programmable metasurface for terahertz beam steering. Applied Physics Letters, 2020, 116, .	3.3	169
54	Liquid crystal integrated metalens with tunable chromatic aberration. Advanced Photonics, 2020, 2, 1.	11.8	68

#	Article	IF	CITATIONS
55	Liquid-crystal splitter for generating and separating autofocusing and autodefocusing circular Airy beams. Optics Express, 2020, 28, 26151.	3.4	10
56	Liquid crystal integrated metalens with dynamic focusing property. Optics Letters, 2020, 45, 4324.	3.3	30
57	Tunable terahertz absorber based on transparent and flexible metamaterial. Chinese Optics Letters, 2020, 18, 092403.	2.9	22
58	Photopatterned liquid crystal mediated terahertz Bessel vortex beam generator [Invited]. Chinese Optics Letters, 2020, 18, 080003.	2.9	5
59	Editorial for special issue on soft-matter photonics (soft mattonics). Chinese Optics Letters, 2020, 18, 080001.	2.9	0
60	3D porous graphene-assisted capsulized cholesteric liquid crystals for terahertz power visualization. Optics Letters, 2020, 45, 5892.	3.3	22
61	Broadband achromatic metalens in terahertz regime. Science Bulletin, 2019, 64, 1525-1531.	9.0	98
62	54.2: <i>Invited Paper:</i> Liquid Crystal Based Optical Processing. Digest of Technical Papers SID International Symposium, 2019, 50, 589-589.	0.3	0
63	Complete measurement and multiplexing of orbital angular momentum Bell states. Physical Review A, 2019, 100, .	2.5	10
64	Liquid crystal enabled dynamic cloaking of terahertz Fano resonators. Applied Physics Letters, 2019, 114, .	3.3	45
65	Lightâ€Activated Liquid Crystalline Hierarchical Architecture Toward Photonics. Advanced Optical Materials, 2019, 7, 1900393.	7.3	29
66	Chirality invertible superstructure mediated active planar optics. Nature Communications, 2019, 10, 2518.	12.8	106
67	Some Improved Razumikhin Stability Criteria for Impulsive Stochastic Delay Differential Systems. IEEE Transactions on Automatic Control, 2019, 64, 5207-5213.	5.7	153
68	Broadband Reflection in Polymerâ€Stabilized Cholesteric Liquid Crystals via Thiol–Acrylate Chemistry. Angewandte Chemie - International Edition, 2019, 58, 6698-6702.	13.8	62
69	Broadband Reflection in Polymer‧tabilized Cholesteric Liquid Crystals via Thiol–Acrylate Chemistry. Angewandte Chemie, 2019, 131, 6770-6774.	2.0	8
70	A Fast-Response and Helicity-Dependent Lens Enabled by Micro-Patterned Dual-Frequency Liquid Crystals. Crystals, 2019, 9, 111.	2.2	15
71	Self-Assembled Asymmetric Microlenses for Four-Dimensional Visual Imaging. ACS Nano, 2019, 13, 13709-13715.	14.6	39
72	Moment exponential stability of stochastic nonlinear delay systems with impulse effects at random times. International Journal of Robust and Nonlinear Control, 2019, 29, 3809-3820.	3.7	43

#	Article	IF	CITATIONS
73	Liquid crystal tunable terahertz lens with spin-selected focusing property. Optics Express, 2019, 27, 8800.	3.4	42
74	Auto-transition of vortex- to vector-Airy beams via liquid crystal q-Airy-plates. Optics Express, 2019, 27, 18848.	3.4	15
75	Liquid crystal beyond displays: feature introduction. Optics Express, 2019, 27, 20785.	3.4	5
76	Evolution of orbital angular momentum in a soft quasi-periodic structure with topological defects. Optics Express, 2019, 27, 21667.	3.4	6
77	Ferroelectric liquid crystal mediated fast switchable orbital angular momentum of light. Optics Express, 2019, 27, 36903.	3.4	10
78	Research progress of terahertz liquid crystal materials and devices. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 084205.	0.5	10
79	Fragmentation of twisted light in photon–phonon nonlinear propagation. Applied Physics Letters, 2018, 112, .	3.3	18
80	Digitalizing Selfâ€Assembled Chiral Superstructures for Optical Vortex Processing. Advanced Materials, 2018, 30, 1705865.	21.0	131
81	Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Applied Physics Letters, 2018, 112, .	3.3	47
82	Liquid Crystal Tunable Dielectric Metamaterial Absorber in the Terahertz Range. Applied Sciences (Switzerland), 2018, 8, 2211.	2.5	23
83	Perfect Higher-Order Poincaré Sphere Beams from Digitalized Geometric Phases. Physical Review Applied, 2018, 10, .	3.8	31
84	Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations. Optics Letters, 2018, 43, 4695.	3.3	54
85	Reversible light-directed self-organized 3D liquid crystalline photonic nanostructures doped with azobenzene-functionalized bent-shaped molecules. Journal of Materials Chemistry C, 2018, 6, 7740-7744.	5.5	19
86	Control the orbital angular momentum in third-harmonic generation using quasi-phase-matching. Optics Express, 2018, 26, 17563.	3.4	15
87	Magnetically and electrically polarization-tunable THz emitter with integrated ferromagnetic heterostructure and large-birefringence liquid crystal. Applied Physics Express, 2018, 11, 092101.	2.4	47
88	A novel light diffuser based on the combined morphology of polymer networks and polymer balls in a polymer dispersed liquid crystals film. RSC Advances, 2018, 8, 21690-21698.	3.6	35
89	Nonelectric Sustaining Bistable Polymer Framework Liquid Crystal Films with a Novel Semirigid Polymer Matrix. ACS Applied Materials & Interfaces, 2018, 10, 22757-22766.	8.0	15
90	Biasâ€Polarity Dependent Bidirectional Modulation of Photonic Bandgap in a Nanoengineered 3D Blue Phase Polymer Scaffold for Tunable Laser Application. Advanced Optical Materials, 2018, 6, 1800409.	7.3	34

#	Article	IF	CITATIONS
91	Ultrafast switching of optical singularity eigenstates with compact integrable liquid crystal structures. Optics Express, 2018, 26, 28818.	3.4	17
92	Parallel Processing OAM Modes Through Liquid Crystal Photoalignment. , 2018, , .		1
93	Smectic Layer Origami via Preprogrammed Photoalignment. Advanced Materials, 2017, 29, 1606671.	21.0	42
94	Superstructures: Smectic Layer Origami via Preprogrammed Photoalignment (Adv. Mater. 15/2017). Advanced Materials, 2017, 29, .	21.0	0
95	Optical field control via liquid crystal photoalignment. Molecular Crystals and Liquid Crystals, 2017, 644, 3-11.	0.9	6
96	Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding. ACS Photonics, 2017, 4, 1333-1338.	6.6	93
97	Bifocal Optical-Vortex Lens with Sorting of the Generated Nonseparable Spin-Orbital Angular-Momentum States. Physical Review Applied, 2017, 7, .	3.8	41
98	Lightâ€Patterned Crystallographic Direction of a Selfâ€Organized 3D Soft Photonic Crystal. Advanced Materials, 2017, 29, 1703165.	21.0	120
99	Going beyond the limit of an LCD's color gamut. Light: Science and Applications, 2017, 6, e17043-e17043.	16.6	157
100	Tailoring the photon spin via light–matter interaction in liquid-crystal-based twisting structures. Npj Quantum Materials, 2017, 2, .	5.2	7
101	Dual-responsive deformation of a crosslinked liquid crystal polymer film with complex molecular alignment. Soft Matter, 2017, 13, 6145-6151.	2.7	14
102	Spiral holographic imaging through quantum interference. Applied Physics Letters, 2017, 111, .	3.3	6
103	Generation of strong cylindrical vector pulses via stimulated Brillouin amplification. Applied Physics Letters, 2017, 110, .	3.3	16
104	Improved Results on Delay-Dependent \$\$H_infty \$\$ H â^ž Control for Uncertain Systems with Time-Varying Delays. Circuits, Systems, and Signal Processing, 2017, 36, 1836-1859.	2.0	4
105	Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal. Optics Express, 2017, 25, 11556.	3.4	13
106	Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Optics Express, 2017, 25, 12349.	3.4	79
107	Helicity-dependent forked vortex lens based on photo-patterned liquid crystals. Optics Express, 2017, 25, 14059.	3.4	20
108	Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber. Optics Express, 2017, 25, 23873.	3.4	103

#	Article	IF	CITATIONS
109	Tunable reflective liquid crystal terahertz waveplates. Optical Materials Express, 2017, 7, 2023.	3.0	62
110	Switchable Fresnel lens based on hybrid photo-aligned dual frequency nematic liquid crystal. Optical Materials Express, 2017, 7, 8.	3.0	35
111	Light-Driven Rotation and Pitch Tuning of Self-Organized Cholesteric Gratings Formed in a Semi-Free Film. Polymers, 2017, 9, 295.	4.5	22
112	Generating, Separating and Polarizing Terahertz Vortex Beams via Liquid Crystals with Gradient-Rotation Directors. Crystals, 2017, 7, 314.	2.2	16
113	Vortex-controlled morphology conversion of microstructures on silicon induced by femtosecond vector vortex beams. Applied Physics Letters, 2017, 111, .	3.3	44
114	Examining second-harmonic generation of high-order Laguerre–Gaussian modes through a single cylindrical lens. Optics Letters, 2017, 42, 4387.	3.3	22
115	Some progresses of photoalignment technique applied in liquid crystal nondisplay field. Chinese Journal of Liquid Crystals and Displays, 2017, 32, 411-423.	0.3	1
116	Integrated and reconfigurable optical paths based on stacking optical functional films. Optics Express, 2016, 24, 25510.	3.4	15
117	Extended Cauchy equations of congruent LiNbO_3 in the terahertz band and their applications. Optical Materials Express, 2016, 6, 3766.	3.0	3
118	Liquid crystal depolarizer based on photoalignment technology. Photonics Research, 2016, 4, 70.	7.0	26
119	Lasing of self-organized helical cholesteric liquid crystal micro-droplets based on emulsification. Optical Materials Express, 2016, 6, 1256.	3.0	10
120	Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor. Applied Physics Letters, 2016, 108, .	3.3	85
121	Generation of self-healing and transverse accelerating optical vortices. Applied Physics Letters, 2016, 109, .	3.3	23
122	Interlaced cholesteric liquid crystal fingerprint textures via sequential UV-induced polymer-stabilization. Optical Materials Express, 2016, 6, 19.	3.0	16
123	Fork gratings based on ferroelectric liquid crystals. Optics Express, 2016, 24, 5822.	3.4	21
124	Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers. Chinese Physics B, 2016, 25, 094222.	1.4	10
125	Light-reconfigured waveband-selective diffraction device enabled by micro-patterning of a photoresponsive self-organized helical superstructure. Journal of Materials Chemistry C, 2016, 4, 9325-9330.	5.5	31
126	Entanglement of photons with complex spatial structure in Hermite-Laguerre-Gaussian modes. Physical Review A, 2016, 94, .	2.5	16

#	Article	lF	CITATIONS
127	Generation of Equal-Energy Orbital Angular Momentum Beams via Photopatterned Liquid Crystals. Physical Review Applied, 2016, 5, .	3.8	55
128	Meta-q-plate for complex beam shaping. Scientific Reports, 2016, 6, 25528.	3.3	86
129	Beam shaping via photopatterned liquid crystals. Liquid Crystals, 2016, 43, 2051-2061.	2.2	42
130	Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating. Optical Materials Express, 2016, 6, 597.	3.0	38
131	Optical array generator based on blue phase liquid crystal Dammann grating. Optical Materials Express, 2016, 6, 1087.	3.0	30
132	Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO_3 crystal. Optics Letters, 2016, 41, 1169.	3.3	35
133	Beam Shaping Based on Photopatterned Liquid Crystals. Guangxue Xuebao/Acta Optica Sinica, 2016, 36, 1026005.	1.2	1
134	Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask. Scientific Reports, 2015, 5, 17484.	3.3	55
135	Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. Applied Physics Letters, 2015, 107, .	3.3	100
136	Rationally Designed Dynamic Superstructures Enabled by Photoaligning Cholesteric Liquid Crystals. Advanced Optical Materials, 2015, 3, 1691-1696.	7.3	58
137	Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes. Light: Science and Applications, 2015, 4, e253-e253.	16.6	148
138	Electrically tunable holographic polymer templated blue phase liquid crystal grating. Chinese Physics B, 2015, 24, 064203.	1.4	13
139	Wide tunable lasing in photoresponsive chiral liquid crystal emulsion. Journal of Materials Chemistry C, 2015, 3, 2462-2470.	5.5	44
140	Large birefringence smectic-A liquid crystals for high contrast bistable displays. Optical Materials Express, 2015, 5, 281.	3.0	8
141	Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings. Photonics Research, 2015, 3, 133.	7.0	106
142	Photo-induced storage and mask-free arbitrary micro-patterning in solution-processable and simple-structured photochromic organic light-emitting diodes. Organic Electronics, 2015, 26, 476-480.	2.6	12
143	Tunable terahertz filter based on alternative liquid crystal layers and metallic slats. Chinese Optics Letters, 2015, 13, 120401-120404.	2.9	12
144	Simulation and optimization of liquid crystal gratings with alternate twisted nematic and planar aligned regions. Applied Optics, 2014, 53, E14.	1.8	12

#	Article	IF	CITATIONS
145	Fast switchable optical vortex generator based on blue phase liquid crystal fork grating. Optical Materials Express, 2014, 4, 2535.	3.0	31
146	Tunable Fano resonance in hybrid graphene-metal gratings. Applied Physics Letters, 2014, 104, .	3.3	49
147	34.4: <i>Invited Paper</i> : THz Devices based on High Birefringence Liquid Crystals. Digest of Technical Papers SID International Symposium, 2014, 45, 491-494.	0.3	2
148	Generating Switchable and Reconfigurable Optical Vortices via Photopatterning of Liquid Crystals. Advanced Materials, 2014, 26, 1590-1595.	21.0	143
149	Fabrication of liquid crystal gratings based on photoalignment technology. Proceedings of SPIE, 2013,	0.8	1
150	Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Research, 2013, 6, 159-166.	10.4	75
151	A fast response variable optical attenuator based on blue phase liquid crystal. Optics Express, 2013, 21, 5332.	3.4	24
152	Complex liquid crystal alignments accomplished by Talbot self-imaging. Optics Express, 2013, 21, 7608.	3.4	3
153	Brief review of recent research on blue phase liquid crystal materials and devices. Chinese Optics Letters, 2013, 11, 011601-11605.	2.9	12
154	Applications of Dynamic Mask Based Photolithography in Liquid Crystal Alignment. Chinese Journal of Liquid Crystals and Displays, 2013, 28, 199-203.	0.3	0
155	Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Optics Express, 2012, 20, 16684.	3.4	135
156	Bistable state in polymer stabilized blue phase liquid crystal. Optical Materials Express, 2012, 2, 1353.	3.0	5
157	Fast response dual-frequency liquid crystal switch with photo-patterned alignments. Optics Letters, 2012, 37, 3627.	3.3	47
158	Large birefringence liquid crystal material in terahertz range. Optical Materials Express, 2012, 2, 1314.	3.0	104
159	Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals. Applied Physics Letters, 2012, 101, .	3.3	85
160	Polarization independent liquid crystal gratings based on orthogonal photoalignments. Applied Physics Letters, 2012, 100, 111116.	3.3	68
161	Lowâ€ŧemperatureâ€∎pplicable polymerâ€stabilized blueâ€phase liquid crystal and its Kerr effect. Journal of the Society for Information Display, 2012, 20, 326-332.	2.1	13
162	Polarizationâ€independent blueâ€phase liquidâ€crystal gratings driven by vertical electric field. Journal of the Society for Information Display, 2012, 20, 341-346.	2.1	45

#	Article	IF	CITATIONS
163	Liquid crystal gratings based on alternate TN and PA photoalignment. Optics Express, 2012, 20, 5384.	3.4	79
164	Liquid crystal gratings from nematic to blue phase. , 2012, , .		0
165	Pâ€105: Fast Switchable Grating Based on Ferroelectric Liquid Crystal. Digest of Technical Papers SID International Symposium, 2012, 43, 1456-1458.	0.3	0
166	Liquid crystal blue phase induced by bent-shaped molecules with allylic end groups. Optical Materials Express, 2011, 1, 1478.	3.0	21
167	Optimization of biâ€layered nanoâ€wire grids as highâ€efficiency polarizers for power recycling in liquid•rystal displays. Journal of the Society for Information Display, 2011, 19, 441-446.	2.1	3
168	Self-polarizing terahertz liquid crystal phase shifter. AIP Advances, 2011, 1, .	1.3	81
169	Dispersion Study of Optical Nanowire Microcoil Resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 1102-1106.	2.9	18
170	Measurement of Surface Plasmon Polariton Enhanced Goos–Hanchen Shift Based on Grating and Liquid Crystal Technologies. IEEE Photonics Technology Letters, 2011, 23, 1829-1831.	2.5	5
171	Single cell gap polymer-stabilized blue-phase transflective LCDs using internal nanowire grid polarizer. Journal of Information Display, 2011, 12, 115-119.	4.0	10
172	A Transflective Nano-Wire Grid Polarizer Based Fiber-Optic Sensor. Sensors, 2011, 11, 2488-2495.	3.8	20
173	A three-beam path photonic crystal fiber modal interferometer and its sensing applications. Journal of Applied Physics, 2010, 108, 023107.	2.5	19
174	A Liquid Crystal Tunable Wavelength-Interleaved Isolator With Flat Spectral Response. Journal of Lightwave Technology, 2010, 28, 2890-2896.	4.6	1
175	Nonlinear plasmonic frequency conversion through quasiphase matching. Physical Review B, 2010, 82,	3.2	31
176	Color Tuning via Adjusting the Dye-Loading Capacity of a Polymer. Langmuir, 2009, 25, 4352-4355.	3.5	6
177	Creating Bicolor Patterns via Selective Photobleaching with A Single Dye Species. Langmuir, 2009, 25, 3894-3897.	3.5	11
178	Nanoimprint lithography and surface modification as prospective technologies for heterogeneous integration. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3571-3575.	0.8	4
179	Site-Selective Patterning of Organic Luminescent Molecules via Gas Phase Deposition. Langmuir, 2008, 24, 5315-5318.	3.5	18
180	Fabrication of Multicolor Patterns with a Single Dye Species on a Polymer Surface. Langmuir, 2008, 24, 12745-12747.	3.5	6

#	Article	IF	CITATIONS
181	Multicolor Emission on Prepatterned Substrates Using a Single Dye Species. Advanced Materials, 2007, 19, 2119-2123.	21.0	34
182	Room-Temperature Imprinting Poly(acrylic acid)/Poly(allylamine hydrochloride) Multilayer Films by Using Polymer Molds. Langmuir, 2007, 23, 3254-3259.	3.5	47
183	Patterning Layered Polymeric Multilayer Films by Room-Temperature Nanoimprint Lithography. Macromolecular Rapid Communications, 2006, 27, 505-510.	3.9	20
184	Synthesis and thermotropic liquid-crystalline behavior of novel main-chain poly(aryl ether ketones). Journal of Applied Polymer Science, 2003, 89, 1347-1350.	2.6	2
185	Synthesis and characterization of trifluoromethylated poly(aryl ether ketone)s. Polymers for Advanced Technologies, 2003, 14, 221-225.	3.2	18
186	Electrically modulated large range tuning of self-assembled photonic bandgaps in polymer-stabilised blue phases. Liquid Crystals, 0, , 1-9.	2.2	2