Carolyn M Sue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7781805/publications.pdf

Version: 2024-02-01

61984 69250 6,555 113 43 77 citations h-index g-index papers 115 115 115 11381 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitochondrial Dysfunction in Parkinson's Disease: New Mechanistic Insights and Therapeutic Perspectives. Current Neurology and Neuroscience Reports, 2018, 18, 21.	4.2	401
2	New insights into the complex role of mitochondria in Parkinson's disease. Progress in Neurobiology, 2019, 177, 73-93.	5.7	268
3	The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Human Molecular Genetics, 2014, 23, 5227-5242.	2.9	264
4	Population prevalence of the MELAS A3243G mutation. Mitochondrion, 2007, 7, 230-233.	3.4	248
5	<scp>N</scp> omenclature of genetic movement disorders: <scp>R</scp> ecommendations of the international <scp>P</scp> arkinson and movement disorder society task force. Movement Disorders, 2016, 31, 436-457.	3.9	228
6	Activation of Â-Glucocerebrosidase Reduces Pathological Â-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. Journal of Neuroscience, 2016, 36, 7693-7706.	3.6	220
7	Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-Synuclein externalization via exosomes. Human Molecular Genetics, 2014, 23, 2816-2833.	2.9	205
8	Disease-specific, neurosphere-derived cells as models for brain disorders. DMM Disease Models and Mechanisms, 2010, 3, 785-798.	2.4	175
9	Patient care standards for primary mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genetics in Medicine, 2017, 19, 1380-1397.	2.4	173
10	Use of Whole-Exome Sequencing for Diagnosis of Limb-Girdle Muscular Dystrophy. JAMA Neurology, 2015, 72, 1424.	9.0	164
11	Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease. Scientific Reports, 2017, 7, 44373.	3.3	152
12	The role of ATP13A2 in Parkinson's disease: Clinical phenotypes and molecular mechanisms. Movement Disorders, 2015, 30, 770-779.	3.9	144
13	Mutant Parkin Impairs Mitochondrial Function and Morphology in Human Fibroblasts. PLoS ONE, 2010, 5, e12962.	2.5	140
14	Parkinson's disease-associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction. Human Molecular Genetics, 2014, 23, 2802-2815.	2.9	136
15	Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain, 2015, 138, 2847-2858.	7.6	128
16	<i>LRRK2</i> mutations impair depolarization-induced mitophagy through inhibition of mitochondrial accumulation of RAB10. Autophagy, 2020, 16, 203-222.	9.1	124
17	Parkinson's disease and the gastrointestinal microbiome. Journal of Neurology, 2020, 267, 2507-2523.	3.6	119
18	Prevalence of Mitochondrial 1555Aâ†'G Mutation in Adults of European Descent. New England Journal of Medicine, 2009, 360, 642-644.	27.0	115

#	Article	IF	CITATIONS
19	Mutations in <i>HSPB8</i> causing a new phenotype of distal myopathy and motor neuropathy. Neurology, 2016, 86, 391-398.	1.1	107
20	ATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndrome. Neurobiology of Aging, 2012, 33, 1843.e1-1843.e7.	3.1	106
21	Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway. Scientific Reports, 2016, 6, 29196.	3.3	106
22	Pathogenic effects of novel mutations in the Pâ€type ATPase <i>ATP13A2</i> (<i>PARK9</i>) causing Kuforâ€Rakeb syndrome, a form of earlyâ€onset parkinsonism. Human Mutation, 2011, 32, 956-964.	2.5	105
23	A <i>SLC39A8</i> variant causes manganese deficiency, and glycosylation and mitochondrial disorders. Journal of Inherited Metabolic Disease, 2017, 40, 261-269.	3.6	101
24	Mitochondrial disease in adults: recent advances and future promise. Lancet Neurology, The, 2021, 20, 573-584.	10.2	96
25	A comparison of current serum biomarkers as diagnostic indicators of mitochondrial diseases. Neurology, 2016, 86, 2010-2015.	1.1	89
26	Fibroblast growth factor 21 is a sensitive biomarker of mitochondrial disease. Neurology, 2013, 81, 1819-1826.	1.1	85
27	Systematic review of cardiac electrical disease in Kearns–Sayre syndrome and mitochondrial cytopathy. International Journal of Cardiology, 2015, 181, 303-310.	1.7	81
28	Identical Mitochondrial DNA Deletion in a Woman with Ocular Myopathy and in Her Son with Pearson Syndrome. American Journal of Human Genetics, 2002, 71, 679-683.	6.2	76
29	Frequency of the D620N Mutation in VPS35 in Parkinson Disease. Archives of Neurology, 2012, 69, 1360.	4.5	76
30	Genetic mimics of cerebral palsy. Movement Disorders, 2019, 34, 625-636.	3.9	76
31	TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. Journal of Clinical Investigation, 2018, 128, 1164-1177.	8.2	75
32	<i>SQSTM1</i> splice site mutation in distal myopathy with rimmed vacuoles. Neurology, 2015, 85, 665-674.	1.1	74
33	Mutations in <i>GNAL</i> . JAMA Neurology, 2014, 71, 490.	9.0	70
34	Lossâ€ofâ€Function Variants in <scp>HOPS</scp> Complex Genes <scp><i>VPS16</i></scp> and <scp><i>VPS41</i></scp> Cause Early Onset Dystonia Associated with Lysosomal Abnormalities. Annals of Neurology, 2020, 88, 867-877.	5.3	70
35	Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia. Human Molecular Genetics, 2015, 24, 2297-2307.	2.9	64
36	Aerobic exercise and muscle metabolism in patients with mitochondrial myopathy. Muscle and Nerve, 2006, 33, 524-531.	2.2	62

#	Article	IF	Citations
37	The diagnostic utility of genome sequencing in a pediatric cohort with suspected mitochondrial disease. Genetics in Medicine, 2020, 22, 1254-1261.	2.4	59
38	Pigmentary retinopathy associated with the mitochondrial DNA 3243 point mutation. Neurology, 1997, 49, 1013-1017.	1.1	56
39	A patient-derived stem cell model of hereditary spastic paraplegia with <i>SPAST</i> mutations. DMM Disease Models and Mechanisms, 2013, 6, 489-502.	2.4	55
40	Expanding the phenotype of GMPPB mutations. Brain, 2015, 138, 836-844.	7.6	54
41	Olfactory impairment in older adults is associated with poorer diet quality over 5Âyears. European Journal of Nutrition, 2016, 55, 1081-1087.	3.9	51
42	Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. Journal of Neurology, 2013, 260, 2516-2522.	3.6	49
43	Mechanism of impaired microtubule-dependent peroxisome trafficking and oxidative stress in SPAST-mutated cells from patients with Hereditary Spastic Paraplegia. Scientific Reports, 2016, 6, 27004.	3.3	49
44	The broadening spectrum of mitochondrial disease: Shifts in the diagnostic paradigm. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1360-1367.	2.4	48
45	LARS2 Variants Associated with Hydrops, Lactic Acidosis, Sideroblastic Anemia, and Multisystem Failure. JIMD Reports, 2015, 28, 49-57.	1.5	48
46	Functional hyperspectral imaging captures subtle details of cell metabolism in olfactory neurosphere cells, disease-specific models of neurodegenerative disorders. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 56-63.	4.1	48
47	Gastrointestinal dysfunction in Parkinson's disease. Journal of Neurology, 2020, 267, 1377-1388.	3.6	48
48	Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in Hereditary Spastic Paraplegia. Biology Open, 2014, 3, 494-502.	1.2	47
49	A novel quantitative assay of mitophagy: Combining high content fluorescence microscopy and mitochondrial DNA load to quantify mitophagy and identify novel pharmacological tools against pathogenic heteroplasmic mtDNA. Pharmacological Research, 2015, 100, 24-35.	7.1	47
50	Standardized practices for RNA diagnostics using clinically accessible specimens reclassifies 75% of putative splicing variants. Genetics in Medicine, 2022, 24, 130-145.	2.4	45
51	Whole genome sequencing for the genetic diagnosis of heterogenous dystonia phenotypes. Parkinsonism and Related Disorders, 2019, 69, 111-118.	2.2	44
52	Diagnosis of â€~possible' mitochondrial disease: an existential crisis. Journal of Medical Genetics, 2019, 56, 123-130.	3.2	42
53	Movement disorders in mitochondrial disease. Journal of Neurology, 2018, 265, 1230-1240.	3. 6	41
54	Role of microRNAs in the Regulation of \hat{l}_{\pm} -Synuclein Expression: A Systematic Review. Frontiers in Molecular Neuroscience, 2016, 9, 128.	2.9	38

#	Article	IF	CITATIONS
55	Use of Whole-Genome Sequencing for Mitochondrial Disease Diagnosis. Neurology, 2022, 99, .	1.1	33
56	Defining the genetic basis of early onset hereditary spastic paraplegia using whole genome sequencing. Neurogenetics, 2016, 17, 265-270.	1.4	32
57	PARK Genes Link Mitochondrial Dysfunction and Alpha-Synuclein Pathology in Sporadic Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 612476.	3.7	32
58	The Genetics of Mitochondrial Disease. Seminars in Neurology, 2011, 31, 519-530.	1.4	32
59	Mitochondrial diseases. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 147, 125-141.	1.8	30
60	The gut microbiota: A novel therapeutic target in Parkinson's disease?. Parkinsonism and Related Disorders, 2019, 66, 265-266.	2.2	30
61	Two Faces of the Same Coin: Benign Familial Infantile Seizures and Paroxysmal Kinesigenic Dyskinesia Caused by <emph type="ital">PRRT2</emph> Mutations. Archives of Neurology, 2012, 69, 668.	4.5	28
62	Increased Diagnostic Yield of Spastic Paraplegia with or Without Cerebellar Ataxia Through Whole-Genome Sequencing. Cerebellum, 2019, 18, 781-790.	2.5	28
63	Depression in Parkinson's disease: Perspectives from an Australian cohort. Journal of Affective Disorders, 2020, 277, 1038-1044.	4.1	26
64	An Update on the Hereditary Spastic Paraplegias: New Genes and New Disease Models. Movement Disorders Clinical Practice, 2015, 2, 213-223.	1.5	25
65	Mitochondrial DNA haplogroups J and K are not protective for Parkinson's disease in the Australian community. Movement Disorders, 2009, 24, 290-292.	3.9	23
66	Serum FGF-21, GDF-15, and blood mtDNA copy number are not biomarkers of Parkinson disease. Neurology: Clinical Practice, 2020, 10, 40-46.	1.6	23
67	Oxidative Stress-Induced Axon Fragmentation Is a Consequence of Reduced Axonal Transport in Hereditary Spastic Paraplegia SPAST Patient Neurons. Frontiers in Neuroscience, 2020, 14, 401.	2.8	23
68	Increased Added Sugar Consumption Is Common in Parkinson's Disease. Frontiers in Nutrition, 2021, 8, 628845.	3.7	23
69	The phenotypic spectrum of dystonia in Mohr–Tranebjaerg syndrome. Movement Disorders, 2012, 27, 1034-1040.	3.9	22
70	Health-Related Quality of Life for Parkinson's Disease Patients and Their Caregivers. Journal of Movement Disorders, 2021, 14, 42-52.	1.3	22
71	Expanding the spectrum of PEX16 mutations and novel insights into disease mechanisms. Molecular Genetics and Metabolism Reports, 2018, 16, 46-51.	1.1	21
72	High Degree of Genetic Heterogeneity for Hereditary Cerebellar Ataxias in Australia. Cerebellum, 2019, 18, 137-146.	2.5	21

#	Article	IF	CITATIONS
73	Loss of ATP13A2 impairs glycolytic function in Kufor-Rakeb syndrome patient-derived cell models. Parkinsonism and Related Disorders, 2016, 27, 67-73.	2.2	20
74	The impact of device-assisted therapies on the gut microbiome in Parkinson's disease. Journal of Neurology, 2022, 269, 780-795.	3.6	19
75	Motor protein binding and mitochondrial transport are altered by pathogenic TUBB4A variants. Human Mutation, 2018, 39, 1901-1915.	2.5	17
76	Mitochondrial Function in Hereditary Spastic Paraplegia: Deficits in SPG7 but Not SPAST Patient-Derived Stem Cells. Frontiers in Neuroscience, 2020, 14, 820.	2.8	17
77	Dietary intakes of fats, fish and nuts and olfactory impairment in older adults. British Journal of Nutrition, 2015, 114, 240-247.	2.3	15
78	The Gut Microbiome in Parkinson's Disease: A Longitudinal Study of the Impacts on Disease Progression and the Use of Device-Assisted Therapies. Frontiers in Aging Neuroscience, 2022, 14, .	3.4	15
79	Practical approaches to commencing deviceâ€essisted therapies for Parkinson disease in Australia. Internal Medicine Journal, 2017, 47, 1107-1113.	0.8	14
80	Rehabilitation for ataxia study: protocol for a randomised controlled trial of an outpatient and supported home-based physiotherapy programme for people with hereditary cerebellar ataxia. BMJ Open, 2020, 10, e040230.	1.9	14
81	Patient-Derived Stem Cell Models in SPAST HSP: Disease Modelling and Drug Discovery. Brain Sciences, 2018, 8, 142.	2.3	12
82	Motor Evoked Potentials in Hereditary Spastic Paraplegiaâ€"A Systematic Review. Frontiers in Neurology, 2019, 10, 967.	2.4	12
83	A Novel Homozygous Mutation in the FUCA1 Gene Highlighting Fucosidosis as a Cause of Dystonia: Case Report and Literature Review. Neuropediatrics, 2019, 50, 248-252.	0.6	10
84	Single cell morphology distinguishes genotype and drug effect in Hereditary Spastic Paraplegia. Scientific Reports, 2021, 11, 16635.	3.3	10
85	Nutritional Intake and Gut Microbiome Composition Predict Parkinson's Disease. Frontiers in Aging Neuroscience, 2022, 14, .	3.4	10
86	Mitochondrial disease: recognising more than just the tip of the iceberg. Medical Journal of Australia, 2010, 193, 195-196.	1.7	9
87	Hereditary Parkinsonism-Associated Genetic Variations in PARK9 Locus Lead to Functional Impairment of ATPase Type 13A2. Current Protein and Peptide Science, 2017, 18, 725-732.	1.4	8
88	Mitochondrial DNA disease prevalence: Still underrecognized?. Annals of Neurology, 2008, 64, 471-471.	5.3	7
89	EPG5-Related Vici Syndrome: A Primary Defect of Autophagic Regulation with an Emerging Phenotype Overlapping with Mitochondrial Disorders. JIMD Reports, 2017, 42, 19-29.	1.5	7
90	Dystonia Responsive to Dopamine: POLG Mutations Should Be Considered If Sensory Neuropathy Is Present. Journal of Movement Disorders, 2021, 14, 157-160.	1.3	6

#	Article	IF	CITATIONS
91	Levodopaâ€carbidopa intestinal gel: â€~dismantling the road blocks of a journey'. Internal Medicine Journal, 2018, 48, 472-474.	0.8	5
92	Hereditary sensory and autonomic neuropathy type IC accompanied by upper motor neuron abnormalities and type II juxtafoveal retinal telangiectasias. Journal of the Peripheral Nervous System, 2019, 24, 224-229.	3.1	5
93	Mutations in <i>TUBB4A</i> and spastic paraplegia. Movement Disorders, 2015, 30, 1857-1858.	3.9	4
94	Single Heterozygous <i>ATP13A2</i> Mutations Cause Cellular Dysfunction Associated with Parkinson's Disease. Movement Disorders, 2018, 33, 852-854.	3.9	4
95	Longâ€Term Followâ€Up and Evolution of ADCY5 — From a Ballistic to Dystonic Phenotype. Movement Disorders Clinical Practice, 2020, 7, 985-986.	1.5	4
96	Decompensation of cardiorespiratory function and emergence of anemia during pregnancy in a case of mitochondrial myopathy, lactic acidosis, and sideroblastic anemia 2 with compound heterozygous <scp><i>YARS2</i></scp> pathogenic variants. American Journal of Medical Genetics, Part A, 2022, 188, 2226-2230.	1.2	4
97	Response to Newman et al Genetics in Medicine, 2017, 19, 1380-1380.	2.4	3
98	Patient care standards for primary mitochondrial disease in Australia: an Australian adaptation of the Mitochondrial Medicine Society recommendations. Internal Medicine Journal, 2022, 52, 110-120.	0.8	3
99	Mitochondrial donation: is Australia ready?. Medical Journal of Australia, 2022, 216, 118-121.	1.7	3
100	Cognitive Influences in Parkinson's Disease Patients and Their Caregivers: Perspectives From an Australian Cohort. Frontiers in Neurology, 2021, 12, 673816.	2.4	3
101	Strong Predictive Algorithm of Pathogenesis-Based Biomarkers Improves Parkinson's Disease Diagnosis. Molecular Neurobiology, 2022, 59, 1476-1485.	4.0	3
102	Antibody-Free Targeted Proteomics Assay for Absolute Measurement of \hat{l}_{\pm} -Tubulin Acetylation. Analytical Chemistry, 2020, 92, 11204-11212.	6.5	2
103	Viewpoint on Milestones for Fellowship Training in Movement Disorders. Movement Disorders, 2022, 37, 1605-1609.	3.9	2
104	Parkin western blotting is useful for identification of patients with Parkin-related Parkinson's disease: FigureÂ1. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1436-1437.	1.9	1
105	Reply letter to Jinnah "Locus pocus―and Albanese "Complex dystonia is not a category in the new 2013 consensus classification― Necessary evolution, no magic!. Movement Disorders, 2016, 31, 1760-1762.	3.9	1
106	Maximizing benefits of the levodopa/carbidopa intestinal gel: Systematic considerations, challenging convention and individualizing approaches. Basal Ganglia, 2018, 14, 58-60.	0.3	1
107	024â€Resistance exercises with blood flow restriction in patients with sporadic inclusion body myositis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, A9.1-A9.	1.9	1
108	How Do I Manage Patients With the Levodopa/Carbidopa Intestinal Gel?. Movement Disorders Clinical Practice, 2019, 6, 181-181.	1.5	1

#	Article	IF	CITATIONS
109	125â€Characterising sleep and fatigue in patients with primary mitochondrial disease. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, A40.3-A41.	1.9	0
110	046â€A critical review of biomarkers for hereditary spastic paraplegia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, A15.3-A16.	1.9	0
111	037â€The gut microbiome in Parkinson's disease: longitudinal insights into disease progression and the use of device-assisted therapies. , 2021, , .		0
112	091â€The impact of device-assisted therapy initiation on the gut microbiome in Parkinson's disease. , 2021 , .	,	0
113	015â€Gut microbiota and nutritional profiles of Parkinson's disease patients. , 2021, , .		0