
Volker Schirrmacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7781108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Mechanisms of Anti-Neoplastic and Immune Stimulatory Properties of Oncolytic Newcastle Disease Virus. Biomedicines, 2022, 10, 562.	3.2	14
2	Synergy between TMZ and individualized multimodal immunotherapy to improve overall survival of IDH1 wild-type MGMT promoter-unmethylated GBM patients. Genes and Immunity, 2022, 23, 255-259.	4.1	16
3	Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications. Biomedicines, 2021, 9, 293.	3.2	54
4	Randomized Controlled Immunotherapy Clinical Trials for GBM Challenged. Cancers, 2021, 13, 32.	3.7	27
5	Mitochondria at Work: New Insights into Regulation and Dysregulation of Cellular Energy Supply and Metabolism. Biomedicines, 2020, 8, 526.	3.2	41
6	Evidence-Based Medicine in Oncology: Commercial Versus Patient Benefit. Biomedicines, 2020, 8, 237.	3.2	7
7	Cancer Vaccines and Oncolytic Viruses Exert Profoundly Lower Side Effects in Cancer Patients than Other Systemic Therapies: A Comparative Analysis. Biomedicines, 2020, 8, 61.	3.2	36
8	New Insights into Mechanisms of Long-term Protective Anti-tumor Immunity Induced by Cancer Vaccines Modified by Virus Infection. Biomedicines, 2020, 8, 55.	3.2	11
9	Position paper: new insights into the immunobiology and dynamics of tumor–host interactions require adaptations of clinical studies. Expert Review of Anticancer Therapy, 2020, 20, 639-646.	2.4	2
10	Addition of Multimodal Immunotherapy to Combination Treatment Strategies for Children with DIPG: A Single Institution Experience. Medicines (Basel, Switzerland), 2020, 7, 29.	1.4	15
11	Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy. Biomedicines, 2019, 7, 66.	3.2	58
12	ATIM-30. HOW TO MONITOR IMMUNOGENIC CELL DEATH IN PATIENTS WITH GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi7-vi8.	1.2	2
13	From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). International Journal of Oncology, 2018, 54, 407-419.	3.3	786
14	Immunobiology of Newcastle Disease Virus and Its Use for Prophylactic Vaccination in Poultry and as Adjuvant for Therapeutic Vaccination in Cancer Patients. International Journal of Molecular Sciences, 2017, 18, 1103.	4.1	33
15	Fifty Years of Clinical Application of Newcastle Disease Virus: Time to Celebrate!. Biomedicines, 2016, 4, 16.	3.2	64
16	Strong T-cell costimulation can reactivate tumor antigen-specific T cells in late-stage metastasized colorectal carcinoma patients: Results from a phase I clinical study. International Journal of Oncology, 2015, 46, 71-77.	3.3	16
17	Cancer-reactive memory T cells from bone marrow: Spontaneous induction and therapeutic potential (Review). International Journal of Oncology, 2015, 47, 2005-2016.	3.3	11
18	Signaling through RIG-I and type I interferon receptor: Immune activation by Newcastle disease virus in man versus immune evasion by Ebola virus (Review). International Journal of Molecular Medicine, 2015, 36, 3-10.	4.0	27

#	Article	IF	CITATIONS
19	Oncolytic Newcastle disease virus as a prospective anti-cancer therapy. A biologic agent with potential to break therapy resistance. Expert Opinion on Biological Therapy, 2015, 15, 1757-1771.	3.1	54
20	Long-term survival of a breast cancer patient with extensive liver metastases upon immune and virotherapy: a case report. Immunotherapy, 2015, 7, 855-860.	2.0	25
21	Long-term remission of prostate cancer with extensive bone metastases upon immuno- and virotherapy: A case report. Oncology Letters, 2014, 8, 2403-2406.	1.8	24
22	Harnessing Oncolytic Virus-Mediated Anti-Tumor Immunity. Frontiers in Oncology, 2014, 4, 337.	2.8	9
23	Autologous tumor cell vaccines for post-operative active-specific immunotherapy of colorectal carcinoma: long-term patient survival and mechanism of function. Expert Review of Vaccines, 2014, 13, 117-130.	4.4	34
24	Complete remission of cancer in late-stage disease by radiation and transfer of allogeneic MHC-matched immune T cells: lessons from GvL studies in animals. Cancer Immunology, Immunotherapy, 2014, 63, 535-543.	4.2	9
25	Bispecific Antibodies and Trispecific Immunocytokines for Targeting the Immune System Against Cancer. BioDrugs, 2013, 27, 35-53.	4.6	46
26	Importance of retinoic acid-inducible gene I and of receptor for type I interferon for cellular resistance to infection by Newcastle disease virus. International Journal of Oncology, 2012, 40, 287-98.	3.3	24
27	Antitumor vaccination by Newcastle Disease Virus Hemagglutinin–Neuraminidase plasmid DNA application: Changes in tumor microenvironment and activation of innate anti-tumor immunity. Vaccine, 2011, 29, 1185-1193.	3.8	23
28	Transcriptome analysis and cytokine profiling of naive T cells stimulated by a tumor vaccine via CD3 and CD25. International Journal of Oncology, 2010, 37, 1439-52.	3.3	6
29	The hemagglutinin–neuraminidase gene of Newcastle Disease Virus: A powerful molecular adjuvant for DNA anti-tumor vaccination. Vaccine, 2010, 28, 6891-6900.	3.8	16
30	Expression of RIG-I, IRF3, IFN-β and IRF7 determines resistance or susceptibility of cells to infection by Newcastle Disease Virus. International Journal of Oncology, 2009, 34, 971-82.	3.3	50
31	Activation of Natural Killer Cells by Newcastle Disease Virus Hemagglutinin-Neuraminidase. Journal of Virology, 2009, 83, 8108-8121.	3.4	149
32	Newcastle Disease Virus: A Promising Vector for Viral Therapy, Immune Therapy, and Gene Therapy of Cancer. Methods in Molecular Biology, 2009, 542, 565-605.	0.9	103
33	Host mediated anti-tumor effect of oncolytic Newcastle disease virus after locoregional application. International Journal of Oncology, 2007, 31, 1009-19.	3.3	25
34	Tumor selective replication of Newcastle disease virus: Association with defects of tumor cells in antiviral defence. International Journal of Cancer, 2006, 119, 328-338.	5.1	124
35	The Shaping of a Polyvalent and Highly Individual T-Cell Repertoire in the Bone Marrow of Breast Cancer Patients. Cancer Research, 2006, 66, 8258-8265.	0.9	60
36	Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved antitumor immune memory. Cancer Immunology, Immunotherapy, 2005, 54, 587-598.	4.2	110

#	Article	IF	CITATIONS
37	T cell-mediated immunotherapy of metastases: state of the art in 2005. Expert Opinion on Biological Therapy, 2005, 5, 1051-1068.	3.1	13
38	Tumor-immune memory T cells from the bone marrow exert GvL without GvH reactivity in advanced metastasized cancer. International Journal of Oncology, 2005, 27, 1141-9.	3.3	2
39	Antitumor Vaccination of Patients With Glioblastoma Multiforme: A Pilot Study to Assess Feasibility, Safety, and Clinical Benefit. Journal of Clinical Oncology, 2004, 22, 4272-4281.	1.6	199
40	Antitumor Vaccination in Patients with Head and Neck Squamous Cell Carcinomas with Autologous Virus-Modified Tumor Cells. Cancer Research, 2004, 64, 8057-8061.	0.9	90
41	High cell surface expression of Newcastle disease virus proteins via replicon vectors demonstrates syncytia forming activity of F and fusion promotion activity of HN molecules. International Journal of Oncology, 2004, 25, 293.	3.3	8
42	Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. Journal of Clinical Investigation, 2004, 114, 67-76.	8.2	101
43	Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. Journal of Clinical Investigation, 2004, 114, 67-76.	8.2	62
44	Characteristics of a potent tumor vaccine-induced secondary anti-tumor T cell response. International Journal of Oncology, 2004, 24, 1427-34.	3.3	3
45	High cell surface expression of Newcastle disease virus proteins via replicon vectors demonstrates syncytia forming activity of F and fusion promotion activity of HN molecules. International Journal of Oncology, 2004, 25, 293-302.	3.3	6
46	Bone marrow microenvironment facilitating dendritic cell: CD4 T cell interactions and maintenance of CD4 memory. International Journal of Oncology, 2004, 25, 867-76.	3.3	19
47	A novel tumour model system for the study of long-term protective immunity and immune T cell memory. Cellular Immunology, 2003, 221, 89-99.	3.0	12
48	Cognate interactions between memory T cells and tumor antigen-presenting dendritic cells from bone marrow of breast cancer patients: Bidirectional cell stimulation, survival and antitumor activityin vivo. International Journal of Cancer, 2003, 103, 73-83.	5.1	40
49	Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nature Medicine, 2003, 9, 1151-1157.	30.7	301
50	TNF-Related Apoptosis-Inducing Ligand Mediates Tumoricidal Activity of Human Monocytes Stimulated by Newcastle Disease Virus. Journal of Immunology, 2003, 170, 1814-1821.	0.8	97
51	Induction of Interferon-α and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Human Blood Mononuclear Cells by Hemagglutinin-Neuraminidase but Not F Protein of Newcastle Disease Virus. Virology, 2002, 297, 19-30.	2.4	112
52	Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. International Journal of Cancer, 2001, 92, 96-105.	5.1	146
53	Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nature Medicine, 2001, 7, 452-458.	30.7	260
54	Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. International Journal of Cancer, 2001, 92, 96-105.	5.1	4

VOLKER SCHIRRMACHER

#	Article	IF	CITATIONS
55	Newcastle disease virus infection induces B7-1/B7-2-independent T-cell costimulatory activity in human melanoma cells. Cancer Gene Therapy, 2000, 7, 316-323.	4.6	65
56	Sialoadhesin-Positive Host Macrophages Play an Essential Role in Graft-Versus-Leukemia Reactivity in Mice. Blood, 1999, 93, 4375-4386.	1.4	47
57	Nitric Oxide–Induced Apoptosis in Human Leukemic Lines Requires Mitochondrial Lipid Degradation and Cytochrome C Release. Blood, 1999, 93, 2342-2352.	1.4	145
58	An effective strategy of human tumor vaccine modification by coupling bispecific costimulatory molecules. Cancer Gene Therapy, 1999, 6, 254-262.	4.6	8
59	The bacterial lacZ gene: an important tool for metastasis research and evaluation of new cancer therapies. Cancer and Metastasis Reviews, 1998, 17, 285-294.	5.9	45
60	Nucleocytoplasmic transport of HTLV-1 RNA is regulated by two independent LTR encoded nuclear retention elements. Oncogene, 1998, 16, 3309-3316.	5.9	19
61	The extended packaging sequence of MoMLV contains a constitutive mRNA nuclear export function. FEBS Letters, 1998, 434, 367-371.	2.8	19
62	Differences Between Graft-Versus-Leukemia and Graft-Versus-Host Reactivity. I. Interaction of Donor Immune T Cells With Tumor and/or Host Cells. Blood, 1997, 89, 2189-2202.	1.4	28
63	In Vivo1H-NMR microimaging with respiratory triggering for monitoring adoptive immunotherapy of metastatic mouse lymphoma. Magnetic Resonance in Medicine, 1997, 38, 440-455.	3.0	15
64	Characterization of a murine lymphoma cell line by31P-NMR spectroscopy:In vivo monitoring of the local anti-tumor effects of systemic immune cell transfer. , 1996, 66, 484-495.		10
65	Liver endothelial cells: participation in host response to lymphoma metastasis. Cancer and Metastasis Reviews, 1996, 15, 273-279.	5.9	10
66	Induction of NO synthesis in macrophages by Newcastle disease virus is associated with activation of nuclear factor-I®B. International Immunology, 1996, 8, 491-498.	4.0	55
67	Induction of CD44 expression by the epstein-barr virus latent membrane protein LMP1 is associated with lymphoma dissemination. International Journal of Cancer, 1995, 61, 363-369.	5.1	22
68	Liver endothelial cells participate in T-cell-dependent host resistance to lymphoma metastasis by production of nitric oxidein vivo. International Journal of Cancer, 1995, 63, 405-411.	5.1	48
69	Successful immunotherapy of the highly metastatic murine ESb lymphoma with sensitized CD8+ T cells and IFN- $\hat{l}\pm\hat{l}^2$. International Journal of Cancer, 1994, 57, 538-543.	5.1	24
70	Scattered micrometastases visualized at the single-cell level: Detection and re-isolation oflacZ-labeled metastasized lymphoma cells. International Journal of Cancer, 1994, 58, 275-284.	5.1	68
71	Effective anti-metastatic melanoma vaccination with tumor cells transfected with MHC genes and/or infected with newcastle disease virus (NDV). International Journal of Cancer, 1994, 59, 796-801.	5.1	43
72	Viral hemagglutinin augments peptide-specific cytotoxic T cell responses. European Journal of Immunology, 1993, 23, 2592-2596.	2.9	64

VOLKER SCHIRRMACHER

#	Article	IF	CITATIONS
73	L1 adhesion molecule on mouse leukocytes: regulation and involvement in endothelial cell binding. European Journal of Immunology, 1993, 23, 2927-2931.	2.9	39
74	Expression and function of the neural cell adhesion molecule L1 in mouse leukocytes. European Journal of Immunology, 1992, 22, 1199-1205.	2.9	59
75	Local growth of a Burkitt's lymphomaversus disseminated invasive growth of the autologous EBV-immortalized lymphoblastoid cells and their somatic cell hybrids in SCID mice. International Journal of Cancer, 1992, 50, 265-273.	5.1	26
76	Modification of tumor cells by a low dose of Newcastle disease virus. Cellular Immunology, 1990, 126, 80-90.	3.0	75
77	Tumor-specific T-cell clones recognize different protein determinants of autologous human malignant melanoma cells. International Journal of Cancer, 1990, 45, 834-841.	5.1	21
78	Cellular distribution and biological activity of epidermal growth factor receptors in A431 cells are influenced by cell-cell contact. Journal of Cellular Physiology, 1990, 144, 303-312.	4.1	49
79	Antibodies against the T cell receptor/CD3 complex interfere with distinct intra-thymic cell-cell interactionsin vivo: correlation with arrest of T cell differentiation. European Journal of Immunology, 1989, 19, 857-863.	2.9	29
80	Recruitment and activation of tumor-specific immune t cellsin situ: Functional studies using a sponge matrix model. International Journal of Cancer, 1989, 43, 310-316.	5.1	13
81	Modification of tumor cells by a low dose of Newcastle disease virus. Cancer Immunology, Immunotherapy, 1989, 28, 22-28.	4.2	46
82	Immunobiology and Immunotherapy of Cancer Metastases Ten-Year Studies in an Animal Model Resulting the Design of an Immunotherapy Procedure now under Clinical Testing. Interdisciplinary Science Reviews, 1989, 14, 291-303.	1.4	4
83	Modification of tumor cells by a low dose of Newcastle Disease Virus European Journal of Immunology, 1988, 18, 1159-1166.	2.9	58
84	Oncogene expression in related cancer lines differing in metastatic capacity. Clinical and Experimental Metastasis, 1988, 6, 201-211.	3.3	7
85	A model to account for the effects of oncogenes, TPA, and retinoic acid on the regulation of genes involved in metastasis. Cancer and Metastasis Reviews, 1988, 7, 347-356.	5.9	17
86	Activation of Tumor-Specific CTLP to a Cytolytic Stage Requires Additional Signals. Annals of the New York Academy of Sciences, 1988, 532, 468-471.	3.8	0
87	Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. II. Establishment of specific systemic anti-tumor immunity. Clinical and Experimental Metastasis, 1987, 5, 147-156.	3.3	53
88	Phenotype of stromal cell-associated thymocytesin situ is compatible with selection of the T cell repertoire at an "immature―stage of thymic T cell differentiation. European Journal of Immunology, 1987, 17, 961-967.	2.9	48
89	CD4+ helper T cells are required for resistance to a highly metastatic murine tumor. European Journal of Immunology, 1987, 17, 1863-1866.	2.9	54
90	Shifts in Tumor Cell Phenotypes Induced by Signals from the Microenvironment. Immunobiology, 1980, 157, 89-98.	1.9	97

#	Article	IF	CITATIONS
91	Differences in the expression of histocompatibility antigens on mouse lymphocytes and tumor cells: immunochemical studies. European Journal of Immunology, 1979, 9, 61-66.	2.9	32
92	Interferon production in the murine mixed lymphocyte culture. I. Interferon production caused by differences in the H-2 K and H-2 D region but not by differences in the I region or the M locus. European Journal of Immunology, 1979, 9, 97-99.	2.9	48
93	Production of interferon in the murine mixed lymphocyte culture. II. Interferon production is a T cell-dependent function, independent of proliferation. European Journal of Immunology, 1979, 9, 824-826.	2.9	28
94	Further evidence for derepression of H–2 and Ia-like specificities of foreign haplotypes in mouse tumour cell lines. Nature, 1976, 261, 705-707.	27.8	140
95	Newcastle Disease Virus: A Promising Vector for Viral Therapy of Cancer. , 0, , 171-186.		2