Jack A Kosmicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7780512/publications.pdf

Version: 2024-02-01

218677 477307 23,667 28 26 29 citations g-index h-index papers 45 45 45 43313 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nature Genetics, 2022, 54, 382-392.	21.4	97
2	Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature, 2022, 607, 97-103.	27.8	174
3	Computationally efficient whole-genome regression for quantitative and binary traits. Nature Genetics, 2021, 53, 1097-1103.	21.4	457
4	Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals. American Journal of Human Genetics, 2021, 108, 1350-1355.	6.2	72
5	Sequencing of 640,000 exomes identifies $\langle i \rangle$ GPR75 $\langle i \rangle$ variants associated with protection from obesity. Science, 2021, 373, .	12.6	130
6	Addendum: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2021, 597, E3-E4.	27.8	45
7	Exome sequencing and analysis of 454,787 UK Biobank participants. Nature, 2021, 599, 628-634.	27.8	377
8	ERAP1, ERAP2, and Two Copies of HLA-Aw19 Alleles Increase the Risk for Birdshot Chorioretinopathy in HLA-A29 Carriers., 2021, 62, 3.		14
9	Exome sequencing in schizophrenia-affected parent–offspring trios reveals risk conferred by protein-coding de novo mutations. Nature Neuroscience, 2020, 23, 185-193.	14.8	125
10	Loss of heterozygosity of essential genes represents a widespread class of potential cancer vulnerabilities. Nature Communications, 2020, 11 , 2517 .	12.8	60
11	The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2020, 581, 434-443.	27.8	6,140
12	Transcript expression-aware annotation improves rare variant interpretation. Nature, 2020, 581, 452-458.	27.8	142
13	Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders. Genome Medicine, 2020, 12, 28.	8.2	42
14	Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell, 2020, 180, 568-584.e23.	28.9	1,422
15	Paternal-age-related de novo mutations and risk for five disorders. Nature Communications, 2019, 10, 3043.	12.8	63
16	Applicability of the Mutation–Selection Balance Model to Population Genetics of Heterozygous Protein-Truncating Variants in Humans. Molecular Biology and Evolution, 2019, 36, 1701-1710.	8.9	27
17	Autism spectrum disorder and attention deficit hyperactivity disorder have a similar burden of rare protein-truncating variants. Nature Neuroscience, 2019, 22, 1961-1965.	14.8	148
18	Predicting Splicing from Primary Sequence with Deep Learning. Cell, 2019, 176, 535-548.e24.	28.9	1,305

#	Article	IF	CITATIONS
19	De novo variants in neurodevelopmental disorders with epilepsy. Nature Genetics, 2018, 50, 1048-1053.	21.4	230
20	Predicting the clinical impact of human mutation with deep neural networks. Nature Genetics, 2018, 50, 1161-1170.	21.4	288
21	Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nature Genetics, 2017, 49, 504-510.	21.4	298
22	Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nature Genetics, 2017, 49, 978-985.	21.4	401
23	Discovery of rare variants for complex phenotypes. Human Genetics, 2016, 135, 625-634.	3.8	40
24	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	27.8	9,051
25	Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nature Genetics, 2016, 48, 552-555.	21.4	326
26	A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology. American Journal of Human Genetics, 2015, 96, 784-796.	6.2	53
27	A framework for the interpretation of de novo mutation in human disease. Nature Genetics, 2014, 46, 944-950.	21.4	943
28	Autism spectrum disorder severity reflects the average contribution of de novo and familial influences. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15161-15165.	7.1	125