
## Michael David Dickey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7779835/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF              | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1  | Direct measurement of rate-dependent mode I and mode II traction-separation laws for cohesive zone modeling of laminated glass. Composite Structures, 2022, 279, 114759.                                    | 3.1             | 7            |
| 2  | Liquidâ€Metalâ€Enabled Mechanicalâ€Energyâ€Induced CO <sub>2</sub> Conversion. Advanced Materials, 2022<br>34, e2105789.                                                                                    | '11.1           | 58           |
| 3  | Deposition of silicate coatings on poly(ethylene terephthalate) for improved scratch and solvent resistance. Journal of Applied Polymer Science, 2022, 139, 51800.                                          | 1.3             | 0            |
| 4  | Interactions between Liquid Metal Droplets and Bacterial, Fungal, and Mammalian Cells. Advanced<br>Materials Interfaces, 2022, 9, .                                                                         | 1.9             | 19           |
| 5  | Applications of liquid metals in nanotechnology. Nanoscale Horizons, 2022, 7, 141-167.                                                                                                                      | 4.1             | 47           |
| 6  | Noncontact rotation, levitation, and acceleration of flowing liquid metal wires. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .                              | 3.3             | 17           |
| 7  | Le gallium, un métal liquide d'avenir. Pourlascience Fr, 2022, Nº 532 – février, 48-54.                                                                                                                     | 0.0             | 0            |
| 8  | Tough and stretchable ionogels by in situ phase separation. Nature Materials, 2022, 21, 359-365.                                                                                                            | 13.3            | 246          |
| 9  | Interactions between Liquid Metal Droplets and Bacterial, Fungal, and Mammalian Cells (Adv. Mater.) Tj ETQq1 1 C                                                                                            | ).784314<br>1.9 | rgBT /Overle |
| 10 | Synthesis of Liquid Gallium@Reduced Graphene Oxide Core–Shell Nanoparticles with Enhanced<br>Photoacoustic and Photothermal Performance. Journal of the American Chemical Society, 2022, 144,<br>6779-6790. | 6.6             | 57           |
| 11 | Self-Folding PCB Kirigami: Rapid Prototyping of 3D Electronics via Laser Cutting and Forming. ACS<br>Applied Materials & Interfaces, 2022, 14, 14774-14782.                                                 | 4.0             | 10           |
| 12 | A bottom-up approach to generate isotropic liquid metal network in polymer-enabled 3D thermal management. Chemical Engineering Journal, 2022, 439, 135674.                                                  | 6.6             | 19           |
| 13 | Skinâ€Inspired Capacitive Stress Sensor with Large Dynamic Range via Bilayer Liquid Metal Elastomers.<br>Advanced Materials Technologies, 2022, 7, .                                                        | 3.0             | 23           |
| 14 | Counterpropagating Gradients of Antibacterial and Antifouling Polymer Brushes.<br>Biomacromolecules, 2022, 23, 424-430.                                                                                     | 2.6             | 21           |
| 15 | Liquid Metal Interdigitated Capacitive Strain Sensor with Normal Stress Insensitivity. Advanced<br>Intelligent Systems, 2022, 4, .                                                                          | 3.3             | 28           |
| 16 | Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and<br>Patterned Liquid Metal. Small, 2022, 18, e2201643.                                                           | 5.2             | 40           |
| 17 | Wireless Wearable Electrochemical Sensing Platform with Zero-Power Osmotic Sweat Extraction for Continuous Lactate Monitoring. ACS Sensors, 2022, 7, 2037-2048.                                             | 4.0             | 44           |
| 18 | Metallophobic Coatings to Enable Shape Reconfigurable Liquid Metal Inside 3D Printed Plastics. ACS<br>Applied Materials & Interfaces, 2021, 13, 12709-12718.                                                | 4.0             | 33           |

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Stiff or Extensible in Seconds: Lightâ€Induced Corrugations in Thin Polymer Sheets. Advanced Materials<br>Technologies, 2021, 6, .                                                          | 3.0  | 4         |
| 20 | Surface Modification of Galliumâ€Based Liquid Metals: Mechanisms and Applications in Biomedical<br>Sensors and Soft Actuators. Advanced Intelligent Systems, 2021, 3, 2000159.              | 3.3  | 39        |
| 21 | Liquid metal motor. IScience, 2021, 24, 101911.                                                                                                                                             | 1.9  | 27        |
| 22 | Energy Harvesting and Storage with Soft and Stretchable Materials. Advanced Materials, 2021, 33, e2004832.                                                                                  | 11.1 | 91        |
| 23 | Jumping liquid metal droplets controlled electrochemically. Applied Physics Letters, 2021, 118, .                                                                                           | 1.5  | 15        |
| 24 | Wearable Osmotic-Capillary Patch for Prolonged Sweat Harvesting and Sensing. ACS Applied Materials<br>& Interfaces, 2021, 13, 8071-8081.                                                    | 4.0  | 39        |
| 25 | Liquid Metal-Triggered Assembly of Phenolic Nanocoatings with Antioxidant and Antibacterial<br>Properties. ACS Applied Nano Materials, 2021, 4, 2987-2998.                                  | 2.4  | 26        |
| 26 | Aerosol Spray Deposition of Liquid Metal and Elastomer Coatings for Rapid Processing of Stretchable<br>Electronics. Micromachines, 2021, 12, 146.                                           | 1.4  | 30        |
| 27 | Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler. Npj Flexible Electronics, 2021, 5, .                                        | 5.1  | 44        |
| 28 | Elastic Multifunctional Liquid–Metal Fibers for Harvesting Mechanical and Electromagnetic Energy<br>and as Selfâ€₽owered Sensors. Advanced Energy Materials, 2021, 11, 2100411.             | 10.2 | 97        |
| 29 | Wicking–Polarizationâ€Induced Water Cluster Size Effect on Triboelectric Evaporation Textiles.<br>Advanced Materials, 2021, 33, e2007352.                                                   | 11.1 | 53        |
| 30 | A Review of Liquid Metal Embrittlement: Cracking Open the Disparate Mechanisms. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2158-2172. | 1.1  | 32        |
| 31 | Liquid metals at room temperature. Physics Today, 2021, 74, 30-36.                                                                                                                          | 0.3  | 16        |
| 32 | Energy Harvesting and Storage: Energy Harvesting and Storage with Soft and Stretchable Materials<br>(Adv. Mater. 19/2021). Advanced Materials, 2021, 33, 2170151.                           | 11.1 | 1         |
| 33 | Hybridâ€Filler Stretchable Conductive Composites: From Fabrication to Application. Small Science, 2021,<br>1, 2000080.                                                                      | 5.8  | 80        |
| 34 | Interfacial Tension Modulation of Liquid Metal via Electrochemical Oxidation. Advanced Intelligent<br>Systems, 2021, 3, 2100024.                                                            | 3.3  | 59        |
| 35 | RESHAPE: A Liquid Metal-Based Reshapable Aperture for Compound Frequency, Pattern, and<br>Polarization Reconfiguration. IEEE Transactions on Antennas and Propagation, 2021, 69, 2581-2594. | 3.1  | 13        |
| 36 | Antipathogenic properties and applications of low-dimensional materials. Nature Communications, 2021, 12, 3897.                                                                             | 5.8  | 63        |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Soft and Stretchable Liquid Metal Composites with Shape Memory and Healable Conductivity. ACS<br>Applied Materials & Interfaces, 2021, 13, 28916-28924.                             | 4.0  | 50        |
| 38 | Dynamic control of reflective/diffusive optical surfaces on EGaIn liquid metal. Optical Materials<br>Express, 2021, 11, 2099.                                                       | 1.6  | 10        |
| 39 | Stretchable and Soft Electroadhesion Using Liquidâ€Metal Subsurface Microelectrodes. Advanced<br>Materials Technologies, 2021, 6, 2100263.                                          | 3.0  | 16        |
| 40 | Reversible Underwater Adhesion for Soft Robotic Feet by Leveraging Electrochemically Tunable Liquid<br>Metal Interfaces. ACS Applied Materials & Interfaces, 2021, 13, 37904-37914. | 4.0  | 24        |
| 41 | Gallium Liquid Metal: The Devil's Elixir. Annual Review of Materials Research, 2021, 51, 381-408.                                                                                   | 4.3  | 130       |
| 42 | A Soft Variableâ€Area Electricalâ€Double‣ayer Energy Harvester. Advanced Materials, 2021, 33, e2103142.                                                                             | 11.1 | 33        |
| 43 | Are Contact Angle Measurements Useful for Oxide-Coated Liquid Metals?. Langmuir, 2021, 37, 10914-10923.                                                                             | 1.6  | 54        |
| 44 | Liquid metal elastomer with flytrap-inspired pillar structure for stress sensing. Composites Science and Technology, 2021, 216, 109066.                                             | 3.8  | 24        |
| 45 | Liquid Metal Hybrid Composites with High-Sensitivity and Large Dynamic Range Enabled by Micro- and Macrostructure Engineering. ACS Applied Polymer Materials, 2021, 3, 5302-5315.   | 2.0  | 22        |
| 46 | A Liquid Metal Mediated Metallic Coating for Antimicrobial and Antiviral Fabrics. Advanced Materials, 2021, 33, e2104298.                                                           | 11.1 | 84        |
| 47 | 3D Visibleâ€Lightâ€Driven Plasmonic Oxide Frameworks Deviated from Liquid Metal Nanodroplets.<br>Advanced Functional Materials, 2021, 31, 2106397.                                  | 7.8  | 23        |
| 48 | A Liquid Metal Artificial Muscle. Advanced Materials, 2021, 33, e2103062.                                                                                                           | 11.1 | 82        |
| 49 | Liquid Metal Composites with Enhanced Thermal Conductivity and Stability Using Molecular Thermal<br>Linker. Advanced Materials, 2021, 33, e2103104.                                 | 11.1 | 79        |
| 50 | Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules. Science Advances, 2021, 7, eabi8249.                                     | 4.7  | 71        |
| 51 | A Wearable Patch for Prolonged Sweat Lactate Harvesting and Sensing. , 2021, 2021, 6863-6866.                                                                                       |      | 4         |
| 52 | Osmotically Enabled Wearable Patch for Sweat Harvesting and Lactate Quantification.<br>Micromachines, 2021, 12, 1513.                                                               | 1.4  | 18        |
| 53 | Polymeric encapsulation of liquids via plasma surface polymerization. Journal of Applied Polymer<br>Science, 2020, 137, 48880.                                                      | 1.3  | 0         |
| 54 | Antibacterial Liquid Metals: Biofilm Treatment <i>via</i> Magnetic Activation. ACS Nano, 2020, 14, 802-817.                                                                         | 7.3  | 198       |

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles.<br>Journal of Materials Chemistry B, 2020, 8, 10776-10787.                                                                                  | 2.9  | 31        |
| 56 | Overcoming Rayleigh–Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via<br>electrochemical oxidation. Proceedings of the National Academy of Sciences of the United States of<br>America, 2020, 117, 19026-19032. | 3.3  | 42        |
| 57 | Lighter and Stronger: Cofabricated Electrodes and Variable Stiffness Elements in Dielectric<br>Actuators. Advanced Intelligent Systems, 2020, 2, 2000069.                                                                                   | 3.3  | 24        |
| 58 | Making Light Work of Metal Bending: Laser Forming in Rapid Prototyping. Quantum Beam Science, 2020,<br>4, 44.                                                                                                                               | 0.6  | 12        |
| 59 | Liquid–Solid Mixtures of Ga Metal Infused with Cu Microparticles and Nanoparticles for Microscale<br>and Nanoscale Patterning of Solid Metals at Room Temperature. ACS Applied Nano Materials, 2020, 3,<br>12064-12070.                     | 2.4  | 19        |
| 60 | Soft, Stretchable, and Pneumatically Triggered Thermochromic Optical Filters with Embedded Phosphorescence. ACS Applied Materials & amp; Interfaces, 2020, 12, 26424-26431.                                                                 | 4.0  | 13        |
| 61 | Oxide-mediated mechanisms of gallium foam generation and stabilization during shear mixing in air.<br>Soft Matter, 2020, 16, 5801-5805.                                                                                                     | 1.2  | 14        |
| 62 | Direct write printing of a self-encapsulating liquid metal–silicone composite. Soft Matter, 2020, 16,<br>6608-6618.                                                                                                                         | 1.2  | 63        |
| 63 | Investigation of biasing conditions and energy dissipation in electrochemically controlled capillarity liquid metal electronics. Electronics Letters, 2020, 56, 323-325.                                                                    | 0.5  | 4         |
| 64 | Principles of long-term fluids handling in paper-based wearables with capillary–evaporative transport. Biomicrofluidics, 2020, 14, 034112.                                                                                                  | 1.2  | 32        |
| 65 | Liquid Metal Direct Write and 3D Printing: A Review. Advanced Materials Technologies, 2020, 5, .                                                                                                                                            | 3.0  | 180       |
| 66 | Directed Assembly of Liquid Metal–Elastomer Conductors for Stretchable and Selfâ€Healing<br>Electronics. Advanced Materials, 2020, 32, e2001642.                                                                                            | 11.1 | 72        |
| 67 | Effect of surface interactions on the settlement of particles on a sinusoidally corrugated substrate.<br>RSC Advances, 2020, 10, 11348-11356.                                                                                               | 1.7  | 4         |
| 68 | A river (of liquid metal) runs through it. National Science Review, 2020, 7, 721-722.                                                                                                                                                       | 4.6  | 1         |
| 69 | Liquid Metal Composites with Anisotropic and Unconventional Piezoconductivity. Matter, 2020, 3, 824-841.                                                                                                                                    | 5.0  | 77        |
| 70 | EML webinar overview: Liquid metals at the extreme. Extreme Mechanics Letters, 2020, 40, 100863.                                                                                                                                            | 2.0  | 4         |
| 71 | Ultrasoft Liquid Metal Elastomer Foams with Positive and Negative Piezopermittivity for Tactile<br>Sensing. Advanced Functional Materials, 2020, 30, 2002611.                                                                               | 7.8  | 154       |
| 72 | Application of a Laser Cutter to Pattern Wrinkles on Polymer Films. ACS Applied Polymer Materials, 2020, 2, 1848-1855.                                                                                                                      | 2.0  | 5         |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Attributes, Fabrication, and Applications of Galliumâ€Based Liquid Metal Particles. Advanced Science, 2020, 7, 2000192.                                                                                                   | 5.6  | 246       |
| 74 | Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using<br>high thermal conductivity elastomer encapsulation on liquid metal interconnects. Applied Energy,<br>2020, 262, 114370. | 5.1  | 113       |
| 75 | Flexible and Stretchable Liquid Metal Electronics. , 2020, , 185-230.                                                                                                                                                     |      | 1         |
| 76 | Selfâ€Folding Metal Origami. Advanced Intelligent Systems, 2019, 1, 1900059.                                                                                                                                              | 3.3  | 20        |
| 77 | Rapid Openâ€Air Digital Light 3D Printing of Thermoplastic Polymer. Advanced Materials, 2019, 31,<br>e1903970.                                                                                                            | 11.1 | 112       |
| 78 | Interfacial Rheology of Gallium-Based Liquid Metals. Langmuir, 2019, 35, 11774-11783.                                                                                                                                     | 1.6  | 75        |
| 79 | Hydrogel/Elastomer Laminates Bonded via Fabric Interphases for Stimuli-Responsive Actuators. Matter, 2019, 1, 674-689.                                                                                                    | 5.0  | 74        |
| 80 | Shearâ€Driven Directâ€Write Printing of Roomâ€Temperature Galliumâ€Based Liquid Metal Alloys. Advanced<br>Engineering Materials, 2019, 21, 1900400.                                                                       | 1.6  | 37        |
| 81 | Liquid Metal Nanoparticles as Initiators for Radical Polymerization of Vinyl Monomers. ACS Macro<br>Letters, 2019, 8, 1522-1527.                                                                                          | 2.3  | 109       |
| 82 | Planar, Multifunctional 3D Printed Antennas Using Liquid Metal Parasitics. IEEE Access, 2019, 7,<br>134245-134255.                                                                                                        | 2.6  | 35        |
| 83 | Ultrastretchable Elastic Shape Memory Fibers with Electrical Conductivity. Advanced Science, 2019, 6, 1901579.                                                                                                            | 5.6  | 74        |
| 84 | Materials tactile logic via innervated soft thermochromic elastomers. Nature Communications, 2019, 10, 4187.                                                                                                              | 5.8  | 98        |
| 85 | High Thermal Conductivity Silicone Elastomer Doped with Graphene Nanoplatelets and Eutectic Galn<br>Liquid Metal Alloy. ECS Journal of Solid State Science and Technology, 2019, 8, P357-P362.                            | 0.9  | 37        |
| 86 | Emergence of Liquid Metals in Nanotechnology. ACS Nano, 2019, 13, 7388-7395.                                                                                                                                              | 7.3  | 269       |
| 87 | Corrosion resistant coating based on thiol-ene polymeric system. Progress in Organic Coatings, 2019, 133, 350-356.                                                                                                        | 1.9  | 8         |
| 88 | Self-healing materials for soft-matter machines and electronics. NPG Asia Materials, 2019, 11, .                                                                                                                          | 3.8  | 68        |
| 89 | Phase Separation in Liquid Metal Nanoparticles. Matter, 2019, 1, 192-204.                                                                                                                                                 | 5.0  | 110       |
| 90 | Liquid metal-filled magnetorheological elastomer with positive piezoconductivity. Nature<br>Communications, 2019, 10, 1300.                                                                                               | 5.8  | 267       |

| #   | Article                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Shrink Films Get a Grip. ACS Applied Polymer Materials, 2019, 1, 1088-1095.                                                                                                                    | 2.0  | 10        |
| 92  | UV plasmonic properties of colloidal liquid-metal eutectic gallium-indium alloy nanoparticles.<br>Scientific Reports, 2019, 9, 5345.                                                           | 1.6  | 61        |
| 93  | Toughening stretchable fibers via serial fracturing of a metallic core. Science Advances, 2019, 5, eaat4600.                                                                                   | 4.7  | 52        |
| 94  | Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nature Communications, 2019, 10, 865.                                      | 5.8  | 179       |
| 95  | Thermo-mechanical transformation of shape memory polymers from initially flat discs to bowls and saddles. Smart Materials and Structures, 2019, 28, 045011.                                    | 1.8  | 21        |
| 96  | Towards Wearable Electrochemical Lactate Sensing using Osmotic-Capillary Microfluidic Pumping. ,<br>2019, , .                                                                                  |      | 10        |
| 97  | Optimizing the energy balance to achieve autonomous self-powering for vigilant health and IoT applications. Journal of Physics: Conference Series, 2019, 1407, 012001.                         | 0.3  | 5         |
| 98  | Functional Liquid Metal Nanoparticles Produced by Liquidâ€Based Nebulization. Advanced Materials<br>Technologies, 2019, 4, 1800420.                                                            | 3.0  | 78        |
| 99  | Terahertz waveguide signal processing: passive and active devices. , 2019, , .                                                                                                                 |      | 0         |
| 100 | Lightâ€Induced Buckles Localized by Polymeric Inks Printed on Bilayer Films. Small, 2018, 14, e1704460.                                                                                        | 5.2  | 4         |
| 101 | Liquid metals: fundamentals and applications in chemistry. Chemical Society Reviews, 2018, 47, 4073-4111.                                                                                      | 18.7 | 763       |
| 102 | Soft electrodes combining hydrogel and liquid metal. Soft Matter, 2018, 14, 3296-3303.                                                                                                         | 1.2  | 99        |
| 103 | Silicones for Stretchable and Durable Soft Devices: Beyond Sylgard-184. ACS Applied Materials &<br>Interfaces, 2018, 10, 11261-11268.                                                          | 4.0  | 149       |
| 104 | Liquid-Metal-Filled 3-D Antenna Array Structure With an Integrated Feeding Network. IEEE Antennas<br>and Wireless Propagation Letters, 2018, 17, 739-742.                                      | 2.4  | 21        |
| 105 | Reversibly Reconfigurable Liquid Metal Patch Antenna Using A Superhydrophobic Spray-Coating. , 2018, , .                                                                                       |      | 4         |
| 106 | Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene- <i>alt</i> -maleic anhydride) in aqueous solutions. Nanoscale, 2018, 10, 19871-19878. | 2.8  | 98        |
| 107 | Patterning and Reversible Actuation of Liquid Gallium Alloys by Preventing Adhesion on Rough<br>Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 44686-44695.                           | 4.0  | 74        |
| 108 | Superhydrophobic/oleophobic coatings based on a catalyst driven thiolâ€epoxyâ€acrylate ternary system.<br>Journal of Applied Polymer Science, 2018, 135, 46710.                                | 1.3  | 3         |

| #   | Article                                                                                                                                                                                  | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Electrically reconfigurable terahertz signal processing devices using liquid metal components.<br>Nature Communications, 2018, 9, 4202.                                                  | 5.8  | 35        |
| 110 | In vitro electrochemical assessment of electrodes for neurostimulation in roach biobots. PLoS ONE, 2018, 13, e0203880.                                                                   | 1.1  | 7         |
| 111 | Shape memory polymers for selfâ€folding via compression of thermoplastic sheets. Journal of Applied<br>Polymer Science, 2018, 135, 46889.                                                | 1.3  | 6         |
| 112 | Patterned Liquid Metal Contacts for Printed Carbon Nanotube Transistors. ACS Nano, 2018, 12, 5482-5488.                                                                                  | 7.3  | 63        |
| 113 | 3D Printed Coaxial Transmission Line Using Low Loss Dielectric and Liquid Metal Conductor. , 2018, , .                                                                                   |      | 11        |
| 114 | Mechanochromic Stretchable Electronics. ACS Applied Materials & Interfaces, 2018, 10, 29918-29924.                                                                                       | 4.0  | 72        |
| 115 | A Compound Frequency- and Polarization- Reconfigurable Crossed Dipole Using Multidirectional Spreading of Liquid Metal. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 79-82. | 2.4  | 57        |
| 116 | Electrowetting-actuated liquid metal for RF applications. Journal of Micromechanics and Microengineering, 2017, 27, 025010.                                                              | 1.5  | 45        |
| 117 | Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces. Lab<br>on A Chip, 2017, 17, 710-716.                                                       | 3.1  | 50        |
| 118 | Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nature Communications, 2017, 8, 14482.                                                              | 5.8  | 219       |
| 119 | Controllable curvature from planar polymer sheets in response to light. Soft Matter, 2017, 13, 2299-2308.                                                                                | 1.2  | 45        |
| 120 | Shape-transformable liquid metal nanoparticles in aqueous solution. Chemical Science, 2017, 8, 3832-3837.                                                                                | 3.7  | 181       |
| 121 | Sequential self-folding of polymer sheets. Science Advances, 2017, 3, e1602417.                                                                                                          | 4.7  | 254       |
| 122 | Electrowetting without external voltage using paint-on electrodes. Lab on A Chip, 2017, 17, 1069-1075.                                                                                   | 3.1  | 15        |
| 123 | Liquid metal enabled microfluidics. Lab on A Chip, 2017, 17, 974-993.                                                                                                                    | 3.1  | 354       |
| 124 | Stretchable and Soft Electronics using Liquid Metals. Advanced Materials, 2017, 29, 1606425.                                                                                             | 11.1 | 1,222     |
| 125 | Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Applied Energy, 2017, 202, 736-745.                                           | 5.1  | 260       |
| 126 | A fully coupled thermoâ€viscoelastic finite element model for selfâ€folding shape memory polymer<br>sheets. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1207-1219.    | 2.4  | 21        |

| #   | Article                                                                                                                                                                                                                 | IF            | CITATIONS          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|
| 127 | Sensors: Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid<br>Metal Fibers (Adv. Funct. Mater. 20/2017). Advanced Functional Materials, 2017, 27, .                                | 7.8           | 3                  |
| 128 | Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers.<br>Advanced Functional Materials, 2017, 27, 1605630.                                                               | 7.8           | 257                |
| 129 | Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer. Nano Letters, 2017, 17, 2138-2145.                                                                                                                  | 4.5           | 179                |
| 130 | Oxidation-Mediated Fingering in Liquid Metals. Physical Review Letters, 2017, 119, 174502.                                                                                                                              | 2.9           | 63                 |
| 131 | Fieldâ€Controlled Electrical Switch with Liquid Metal. Advanced Science, 2017, 4, 1700169.                                                                                                                              | 5.6           | 107                |
| 132 | Vacuum-filling of liquid metals for 3D printed RF antennas. Additive Manufacturing, 2017, 18, 221-227.                                                                                                                  | 1.7           | 39                 |
| 133 | Vacuum filling of complex microchannels with liquid metal. Lab on A Chip, 2017, 17, 3043-3050.                                                                                                                          | 3.1           | 169                |
| 134 | Stretchable bioelectronics—Current and future. MRS Bulletin, 2017, 42, 960-967.                                                                                                                                         | 1.7           | 14                 |
| 135 | Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets. Journal of Applied Physics, 2017, 122, .                                                                   | 1.1           | 11                 |
| 136 | Surface modification of PET film via a large area atmospheric pressure plasma: An optical analysis of the plasma and surface characterization of the polymer film. Surface and Coatings Technology, 2017, 309, 371-381. | 2.2           | 43                 |
| 137 | Rapid prototyping of low loss 3D printed waveguides for millimeter-wave applications. , 2017, , .                                                                                                                       |               | 18                 |
| 138 | Liquid metals for active terahertz waveguides. , 2017, , .                                                                                                                                                              |               | 0                  |
| 139 | Active THz Waveguides Enabled by Liquid Metal Actuation. , 2017, , .                                                                                                                                                    |               | 0                  |
| 140 | Ionoprinted Multi-Responsive Hydrogel Actuators. Micromachines, 2016, 7, 98.                                                                                                                                            | 1.4           | 46                 |
| 141 | Bending of Responsive Hydrogel Sheets Guided by Fieldâ€Assembled Microparticle Endoskeleton<br>Structures. Small, 2016, 12, 2283-2290.                                                                                  | 5.2           | 62                 |
| 142 | Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides. Applied Physics Letters, 2016, 109, .                            | 1.5           | 42                 |
| 143 | Amidation of Polyesters Is Slow in Nonaqueous Solvents: Efficient Amidation of Poly(ethylene) Tj ETQq1 1 0.784<br>ACS Applied Materials & Interfaces, 2016, 8, 35641-35649.                                             | 4.0 k314 rgBT | /Overlock 10<br>27 |
| 144 | Liquid metal actuation by electrical control of interfacial tension. Applied Physics Reviews, 2016, 3, 031103.                                                                                                          | 5.5           | 129                |

| #   | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | A simple electroless plating solution for 3D printed microwave components. , 2016, , .                                                                                                                       |      | 33        |
| 146 | Liquid Metals for Soft and Stretchable Electronics. Microsystems and Nanosystems, 2016, , 3-30.                                                                                                              | 0.1  | 15        |
| 147 | Patterning via self-organization and self-folding: Beyond conventional lithography. MRS Bulletin, 2016, 41, 93-96.                                                                                           | 1.7  | 12        |
| 148 | Drawing liquid metal wires at room temperature. Extreme Mechanics Letters, 2016, 7, 55-63.                                                                                                                   | 2.0  | 31        |
| 149 | Using liquid metal alloy (EGaIn) to electrochemically enhance SS stimulation electrodes for biobotic applications. , 2016, 2016, 2141-2144.                                                                  |      | 2         |
| 150 | Localized Instabilities of Liquid Metal Films via Inâ€Plane Recapillarity. Advanced Materials Interfaces,<br>2016, 3, 1600546.                                                                               | 1.9  | 23        |
| 151 | A Method to Manipulate Surface Tension of a Liquid Metal via Surface Oxidation and Reduction.<br>Journal of Visualized Experiments, 2016, , e53567.                                                          | 0.2  | 6         |
| 152 | Recent applications of liquid metals featuring nanoscale surface oxides. Proceedings of SPIE, 2016, , .                                                                                                      | 0.8  | 1         |
| 153 | Correction to "Self-Running Liquid Metal Drops that Delaminate Metal Films at Record Velocities―<br>ACS Applied Materials & Interfaces, 2016, 8, 15855-15855.                                                | 4.0  | 0         |
| 154 | Liquidâ€Metal Microdroplets Formed Dynamically with Electrical Control of Size and Rate. Advanced Materials, 2016, 28, 604-609.                                                                              | 11.1 | 116       |
| 155 | Self-Folding of Thick Polymer Sheets Using Gradients of Heat. Journal of Mechanisms and Robotics, 2016, 8, .                                                                                                 | 1.5  | 21        |
| 156 | 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab on A Chip, 2016, 16, 1812-1820.                                                                               | 3.1  | 174       |
| 157 | Shaped after print. Nature Materials, 2016, 15, 379-380.                                                                                                                                                     | 13.3 | 19        |
| 158 | Selective and directional actuation of elastomer films using chained magnetic nanoparticles.<br>Nanoscale, 2016, 8, 1309-1313.                                                                               | 2.8  | 68        |
| 159 | "2D or not 2D― Shape-programming polymer sheets. Progress in Polymer Science, 2016, 52, 79-106.                                                                                                              | 11.8 | 292       |
| 160 | Microfluidics: Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal<br>Alloy from Microchannels (Adv. Funct. Mater. 5/2015). Advanced Functional Materials, 2015, 25, 654-654. | 7.8  | 3         |
| 161 | Buckled Topography to Enhance Light Absorption in Thin Film Organic Photovoltaics Comprising<br>CuPc/C <sub>60</sub> Bilayer Laminates. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1251-1261.          | 1.4  | 3         |
| 162 | Pump-free feedback control of a frequency reconfigurable liquid metal monopole. , 2015, , .                                                                                                                  |      | 11        |

10

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. Small, 2015, 11,<br>6397-6403.                                                                                                             | 5.2 | 234       |
| 164 | A reconfigurable liquid metal antenna driven by electrochemically controlled capillarity. Journal of<br>Applied Physics, 2015, 117, .                                                                                      | 1.1 | 159       |
| 165 | Transformable liquid-metal nanomedicine. Nature Communications, 2015, 6, 10066.                                                                                                                                            | 5.8 | 466       |
| 166 | Robust Pressure-Actuated Liquid Metal Devices Showing Reconfigurable Electromagnetic Effects at<br>GHz Frequencies. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3122-3130.                             | 2.9 | 9         |
| 167 | Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels. Advanced Functional Materials, 2015, 25, 671-678.                                                             | 7.8 | 112       |
| 168 | Liquid metals as ultra-stretchable, soft, and shape reconfigurable conductors. Proceedings of SPIE, 2015, , .                                                                                                              | 0.8 | 6         |
| 169 | Steering liquid metal flow in microchannels using low voltages. Lab on A Chip, 2015, 15, 3905-3911.                                                                                                                        | 3.1 | 64        |
| 170 | Methods to pattern liquid metals. Journal of Materials Chemistry C, 2015, 3, 3834-3841.                                                                                                                                    | 2.7 | 275       |
| 171 | Self-Running Liquid Metal Drops that Delaminate Metal Films at Record Velocities. ACS Applied<br>Materials & Interfaces, 2015, 7, 23163-23171.                                                                             | 4.0 | 57        |
| 172 | Self-folding of polymer sheets using microwaves and graphene ink. RSC Advances, 2015, 5, 89254-89261.                                                                                                                      | 1.7 | 40        |
| 173 | Facile Conversion of Hydroxy Double Salts to Metal–Organic Frameworks Using Metal Oxide Particles<br>and Atomic Layer Deposition Thin-Film Templates. Journal of the American Chemical Society, 2015, 137,<br>13756-13759. | 6.6 | 174       |
| 174 | Modelling of shape memory polymer sheets that self-fold in response to localized heating. Soft<br>Matter, 2015, 11, 7827-7834.                                                                                             | 1.2 | 36        |
| 175 | Production of Liquid Metal Spheres by Molding. Metals, 2014, 4, 465-476.                                                                                                                                                   | 1.0 | 55        |
| 176 | Influence of Water on the Interfacial Behavior of Gallium Liquid Metal Alloys. ACS Applied Materials<br>& Interfaces, 2014, 6, 22467-22473.                                                                                | 4.0 | 168       |
| 177 | Robust pressure-actuated liquid metal devices showing reconfigurable electromagnetic effects at<br>GHz frequencies. , 2014, , .                                                                                            |     | 2         |
| 178 | Microfluidic coaxial transmission line and phase shifter. Microwave and Optical Technology Letters, 2014, 56, 1459-1462.                                                                                                   | 0.9 | 12        |
| 179 | 3-D printing of liquid metals for stretchable and flexible conductors. Proceedings of SPIE, 2014, , .                                                                                                                      | 0.8 | 4         |
| 180 | On the Design of Microfluidic Implant Coil for Flexible Telemetry System. IEEE Sensors Journal, 2014,<br>14, 1074-1080.                                                                                                    | 2.4 | 85        |

| #   | Article                                                                                                                                                                               | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Emerging Applications of Liquid Metals Featuring Surface Oxides. ACS Applied Materials &<br>Interfaces, 2014, 6, 18369-18379.                                                         | 4.0  | 522       |
| 182 | Self-Folding Origami Microstrip Antennas. IEEE Transactions on Antennas and Propagation, 2014, 62, 5416-5419.                                                                         | 3.1  | 106       |
| 183 | Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter, 2014, 10, 1337-1348.                                                                                        | 1.2  | 301       |
| 184 | Giant and switchable surface activity of liquid metal via surface oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14047-14051. | 3.3  | 309       |
| 185 | Three-dimensional folding of pre-strained polymer sheets <i>via</i> absorption of laser light. Journal of Applied Physics, 2014, 115, .                                               | 1.1  | 58        |
| 186 | In-plane deformation of shape memory polymer sheets programmed using only scissors. Polymer, 2014, 55, 5948-5952.                                                                     | 1.8  | 9         |
| 187 | Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose, 2014, 21, 2557-2566.                                                                                  | 2.4  | 61        |
| 188 | Simple geometric model to describe self-folding of polymer sheets. Physical Review E, 2014, 89, 042601.                                                                               | 0.8  | 30        |
| 189 | Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nature Communications, 2013, 4, 2257.                                                         | 5.8  | 380       |
| 190 | 3D Printing of Free Standing Liquid Metal Microstructures. Advanced Materials, 2013, 25, 5081-5085.                                                                                   | 11.1 | 749       |
| 191 | Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core. Advanced Functional Materials, 2013, 23, 2308-2314.                                               | 7.8  | 501       |
| 192 | Thiol-containing polymeric embedding materials for nanoskiving. Journal of Materials Chemistry C, 2013, 1, 121-130.                                                                   | 2.7  | 18        |
| 193 | Surface wrinkling by chemical modification of poly(dimethylsiloxane)-based networks during sputtering. Soft Matter, 2013, 9, 7797.                                                    | 1.2  | 32        |
| 194 | Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels. Soft Matter, 2013, 9, 7695.                  | 1.2  | 84        |
| 195 | Microfluidic channels fabricated from poly(vinylmethylsiloxane) networks that resist swelling by organic solvents. Lab on A Chip, 2013, 13, 4317.                                     | 3.1  | 6         |
| 196 | Strain-controlled diffraction of light from stretchable liquid metal micro-components. Sensors and Actuators A: Physical, 2013, 193, 246-250.                                         | 2.0  | 30        |
| 197 | Selfâ€Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics. Advanced Materials, 2013, 25, 1589-1592.                                                      | 11.1 | 385       |
| 198 | Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform. Lab on A Chip, 2013, 13, 522-526.                             | 3.1  | 78        |

| #   | Article                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Reconfigurable liquid metal circuits by Laplace pressure shaping. Applied Physics Letters, 2012, 101, .                                                           | 1.5  | 88        |
| 200 | Electromechanical instabilities of thermoplastics: Theory and in situ observation. Applied Physics<br>Letters, 2012, 101, 141911.                                 | 1.5  | 16        |
| 201 | A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Lab on A Chip, 2012, 12, 3961.                         | 3.1  | 124       |
| 202 | Self-folding of polymer sheets using local light absorption. Soft Matter, 2012, 8, 1764-1769.                                                                     | 1.2  | 466       |
| 203 | A Pressure Responsive Fluidic Microstrip Open Stub Resonator Using a Liquid Metal Alloy. IEEE<br>Microwave and Wireless Components Letters, 2012, 22, 577-579.    | 2.0  | 59        |
| 204 | Design and demonstration of a novel micro-Coulter counter utilizing liquid metal electrodes.<br>Journal of Micromechanics and Microengineering, 2012, 22, 115012. | 1.5  | 27        |
| 205 | Flexible Liquid Metal Alloy (EGaln) Microstrip Patch Antenna. IEEE Transactions on Antennas and Propagation, 2012, 60, 2151-2156.                                 | 3.1  | 340       |
| 206 | Advances in bioelectromagnetics for implantable systems. , 2012, , .                                                                                              |      | 0         |
| 207 | Ionic Current Rectification in Softâ€Matter Diodes with Liquidâ€Metal Electrodes. Advanced Functional<br>Materials, 2012, 22, 625-631.                            | 7.8  | 113       |
| 208 | Inherently aligned microfluidic electrodes composed of liquid metal. Lab on A Chip, 2011, 11, 905.                                                                | 3.1  | 216       |
| 209 | Towards Allâ€Soft Matter Circuits: Prototypes of Quasiâ€Liquid Devices with Memristor Characteristics.<br>Advanced Materials, 2011, 23, 3559-3564.                | 11.1 | 189       |
| 210 | A frequency shifting liquid metal antenna with pressure responsiveness. Applied Physics Letters, 2011, 99, .                                                      | 1.5  | 106       |
| 211 | Foldable Printed Circuit Boards on Paper Substrates. Advanced Functional Materials, 2010, 20, 28-35.                                                              | 7.8  | 630       |
| 212 | Transistors Formed from a Single Lithography Step Using Information Encoded in Topography. Small, 2010, 6, 2050-2057.                                             | 5.2  | 7         |
| 213 | Subnanometer Replica Molding of Molecular Steps on Ionic Crystals. Nano Letters, 2010, 10, 4140-4145.                                                             | 4.5  | 23        |
| 214 | Cofabrication: A Strategy for Building Multicomponent Microsystems. Accounts of Chemical Research, 2010, 43, 518-528.                                             | 7.6  | 53        |
| 215 | Charge Transport and Rectification in Arrays of SAM-Based Tunneling Junctions. Nano Letters, 2010, 10, 3611-3619.                                                 | 4.5  | 213       |
| 216 | Thread as a Matrix for Biomedical Assays. ACS Applied Materials & Interfaces, 2010, 2, 1722-1728.                                                                 | 4.0  | 224       |

| #   | Article                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Reversibly Deformable and Mechanically Tunable Fluidic Antennas. Advanced Functional Materials, 2009, 19, 3632-3637.                                                                       | 7.8 | 496       |
| 218 | Optical Antenna Arrays on a Fiber Facet for <i>in Situ</i> Surface-Enhanced Raman Scattering Detection. Nano Letters, 2009, 9, 1132-1138.                                                  | 4.5 | 235       |
| 219 | Controlling the Kinetics of Contact Electrification with Patterned Surfaces. Journal of the American Chemical Society, 2009, 131, 8746-8747.                                               | 6.6 | 37        |
| 220 | A Technique to Transfer Metallic Nanoscale Patterns to Small and Non-Planar Surfaces. ACS Nano, 2009, 3, 59-65.                                                                            | 7.3 | 132       |
| 221 | Viscoelastic properties of oxide-coated liquid metals. Journal of Rheology, 2009, 53, 1305-1326.                                                                                           | 1.3 | 139       |
| 222 | Functionalized Fiber Optic Devices for Surface Enhanced Raman Scattering Detection and Optical Trapping. , 2009, , .                                                                       |     | 0         |
| 223 | High-aspect ratio polymeric pillar arrays formed via electrohydrodynamic patterning. Journal of<br>Materials Science, 2008, 43, 117-122.                                                   | 1.7 | 26        |
| 224 | Eutectic Gallium–Indium (EGaIn): A Moldable Liquid Metal for Electrical Characterization of<br>Selfâ€Assembled Monolayers. Angewandte Chemie - International Edition, 2008, 47, 142-144.   | 7.2 | 533       |
| 225 | Lightâ€Powered Electrical Switch Based on Cargo‣ifting Azobenzene Monolayers. Angewandte Chemie -<br>International Edition, 2008, 47, 3407-3409.                                           | 7.2 | 276       |
| 226 | Eutectic Galliumâ€Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in<br>Microchannels at Room Temperature. Advanced Functional Materials, 2008, 18, 1097-1104. | 7.8 | 1,170     |
| 227 | Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation. ACS Nano, 2008, 2, 800-808.                                                                                | 7.3 | 82        |
| 228 | Nanoskiving: A New Method To Produce Arrays of Nanostructures. Accounts of Chemical Research, 2008, 41, 1566-1577.                                                                         | 7.6 | 135       |
| 229 | Fabrication of Conjugated Polymer Nanowires by Edge Lithography. Nano Letters, 2008, 8, 2100-2105.                                                                                         | 4.5 | 58        |
| 230 | Electrically Addressable Parallel Nanowires with 30 nm Spacing from Micromolding and Nanoskiving.<br>Nano Letters, 2008, 8, 4568-4573.                                                     | 4.5 | 21        |
| 231 | Modeling of Self-Assembly Dynamics of Photolithographically Patterned MUFFINS Biosensor Arrays.<br>Materials Research Society Symposia Proceedings, 2007, 1002, 1.                         | 0.1 | 1         |
| 232 | Photocurable Pillar Arrays Formed via Electrohydrodynamic Instabilities. Chemistry of Materials, 2006, 18, 2043-2049.                                                                      | 3.2 | 51        |
| 233 | Novel 3-D Structures in Polymer Films by Coupling External and Internal Fields. Langmuir, 2006, 22, 4315-4318.                                                                             | 1.6 | 51        |
| 234 | An Automated Statistical Process Control Study of Inline Mixing Using Spectrophotometric<br>Detection. Journal of Chemical Education, 2006, 83, 110.                                       | 1.1 | 6         |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Photocurable pillar arrays formed via AC- and ultrasound-induced electrohydrodynamic instabilities.<br>, 2006, 6151, 936.                                                                                                                             |     | 1         |
| 236 | Planarization for reverse-tone step and flash imprint lithography. , 2006, 6151, 688.                                                                                                                                                                 |     | 6         |
| 237 | Kinetic parameters for step and flash imprint lithography photopolymerization. AICHE Journal, 2006, 52, 777-784.                                                                                                                                      | 1.8 | 34        |
| 238 | Direct imprinting of dielectric materials for dual damascene processing. , 2005, 5751, 210.                                                                                                                                                           |     | 25        |
| 239 | Study of the kinetics of step and flash imprint lithography photopolymerization. AICHE Journal, 2005, 51, 2547-2555.                                                                                                                                  | 1.8 | 36        |
| 240 | Effects of etch barrier densification on step and flash imprint lithography. Journal of Vacuum Science<br>& Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and<br>Phenomena, 2005, 23, 2553.            | 1.6 | 33        |
| 241 | Vinyl ether formulations for step and flash imprint lithography. Journal of Vacuum Science &<br>Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and<br>Phenomena, 2005, 23, 2967.                        | 1.6 | 20        |
| 242 | Electric field and dewetting induced hierarchical structure formation in polymer/polymer/air trilayers. Chaos, 2005, 15, 047506.                                                                                                                      | 1.0 | 54        |
| 243 | Vinyl ethers in ultraviolet curable formulations for step and flash imprint lithography. Journal of<br>Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics<br>Processing and Phenomena, 2004, 22, 131. | 1.6 | 62        |
| 244 | Mesoscale modeling for SFIL simulating polymerization kinetics and densification. , 2004, , .                                                                                                                                                         |     | 20        |
| 245 | Preparation of porous polymer membranes using nano- or micro-pillar arrays as templates. Polymer, 2004, 45, 8469-8474.                                                                                                                                | 1.8 | 38        |
| 246 | Step and Flash Imprint Lithography Modeling and Process Development. Journal of Photopolymer<br>Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 417-419.                                                                                | 0.1 | 13        |
| 247 | Advances in Step and Flash imprint lithography. , 2003, , .                                                                                                                                                                                           |     | 23        |
| 248 | Enhancement of pressureâ€sensitive adhesive by CO <sup>2</sup> laser treatment. Advanced Engineering<br>Materials, 0, , .                                                                                                                             | 1.6 | 0         |