
## Ji-Wook Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7779797/publications.pdf Version: 2024-02-01



LI-MOOK LANC

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge.<br>Chemical Society Reviews, 2019, 48, 1908-1971.                                                                     | 38.1 | 781       |
| 2  | Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Scientific Reports, 2013, 3, 2681.                                                                                               | 3.3  | 580       |
| 3  | Phosphate Doping into Monoclinic BiVO <sub>4</sub> for Enhanced Photoelectrochemical Water<br>Oxidation Activity. Angewandte Chemie - International Edition, 2012, 51, 3147-3151.                                       | 13.8 | 435       |
| 4  | Enabling unassisted solar water splitting by iron oxide and silicon. Nature Communications, 2015, 6, 7447.                                                                                                              | 12.8 | 429       |
| 5  | Fabrication of CaFe <sub>2</sub> O <sub>4</sub> /TaON Heterojunction Photoanode for<br>Photoelectrochemical Water Oxidation. Journal of the American Chemical Society, 2013, 135, 5375-5383.                            | 13.7 | 282       |
| 6  | Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting.<br>Nature Communications, 2016, 7, 13380.                                                                               | 12.8 | 263       |
| 7  | Highâ€Performance Hydrogen Evolution by Ru Single Atoms and Nitridedâ€Ru Nanoparticles Implanted on<br>Nâ€Đoped Graphitic Sheet. Advanced Energy Materials, 2019, 9, 1900931.                                           | 19.5 | 224       |
| 8  | Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO <sub>4</sub><br>Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. ACS Nano, 2015, 9,<br>11820-11829. | 14.6 | 219       |
| 9  | Understanding the origin of photoelectrode performance enhancement by probing surface kinetics.<br>Chemical Science, 2016, 7, 3347-3354.                                                                                | 7.4  | 185       |
| 10 | Defective ZnFe <sub>2</sub> O <sub>4</sub> nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale, 2015, 7, 19144-19151.                                                                      | 5.6  | 183       |
| 11 | Carbon-doped ZnO nanostructures synthesized using vitamin C for visible light photocatalysis.<br>CrystEngComm, 2010, 12, 3929.                                                                                          | 2.6  | 175       |
| 12 | Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen<br>production under visible light irradiation. International Journal of Hydrogen Energy, 2008, 33,<br>5975-5980.             | 7.1  | 165       |
| 13 | Three-Dimensional Type II ZnO/ZnSe Heterostructures and Their Visible Light Photocatalytic Activities.<br>Langmuir, 2011, 27, 10243-10250.                                                                              | 3.5  | 159       |
| 14 | Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical<br>CO <sub>2</sub> reduction system. Energy and Environmental Science, 2015, 8, 3597-3604.                                                   | 30.8 | 152       |
| 15 | Precursor Effects of Citric Acid and Citrates on ZnO Crystal Formation. Langmuir, 2009, 25, 3825-3831.                                                                                                                  | 3.5  | 146       |
| 16 | Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of<br>αâ€Fe <sub>2</sub> O <sub>3</sub> Photoanode. ChemCatChem, 2019, 11, 157-179.                                                      | 3.7  | 135       |
| 17 | A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on<br>a CNT–graphene hybrid support. Journal of Materials Chemistry A, 2013, 1, 8007.                              | 10.3 | 126       |
| 18 | Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes. APL Materials, 2014, 2, .                                                                                 | 5.1  | 120       |

JI-WOOK JANG

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Improved Photoelectrochemical Activity of CaFe <sub>2</sub> O <sub>4</sub> /BiVO <sub>4</sub><br>Heterojunction Photoanode by Reduced Surface Recombination in Solar Water Oxidation. ACS Applied<br>Materials & Interfaces, 2014, 6, 17762-17769. | 8.0  | 114       |
| 20 | A Stable and Efficient Hematite Photoanode in a Neutral Electrolyte for Solar Water Splitting:<br>Towards Stability Engineering. Advanced Energy Materials, 2014, 4, 1400476.                                                                      | 19.5 | 110       |
| 21 | Highly Efficient and Stable Cadmium Chalcogenide Quantum Dot/ZnO Nanowires for<br>Photoelectrochemical Hydrogen Generation. Chemistry of Materials, 2013, 25, 184-189.                                                                             | 6.7  | 106       |
| 22 | Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment.<br>Advanced Energy Materials, 2017, 7, 1701536.                                                                                                  | 19.5 | 104       |
| 23 | High-performance and stable photoelectrochemical water splitting cell with organic-photoactive-layer-based photoanode. Nature Communications, 2020, 11, 5509.                                                                                      | 12.8 | 103       |
| 24 | Awakening Solar Waterâ€ <b>s</b> plitting Activity of ZnFe <sub>2</sub> O <sub>4</sub> Nanorods by Hybrid<br>Microwave Annealing. Advanced Energy Materials, 2015, 5, 1401933.                                                                     | 19.5 | 95        |
| 25 | Porous ZnO–ZnSe nanocomposites for visible light photocatalysis. Nanoscale, 2012, 4, 2066.                                                                                                                                                         | 5.6  | 94        |
| 26 | Aqueousâ€Solution Route to Zinc Telluride Films for Application to CO <sub>2</sub> Reduction.<br>Angewandte Chemie - International Edition, 2014, 53, 5852-5857.                                                                                   | 13.8 | 91        |
| 27 | Exposed Crystal Face Controlled Synthesis of 3D ZnO Superstructures. Langmuir, 2010, 26, 14255-14262.                                                                                                                                              | 3.5  | 90        |
| 28 | Observation and Alteration of Surface States of Hematite Photoelectrodes. Journal of Physical<br>Chemistry C, 2014, 118, 17054-17059.                                                                                                              | 3.1  | 90        |
| 29 | Tree branch-shaped cupric oxide for highly effective photoelectrochemical water reduction.<br>Nanoscale, 2015, 7, 7624-7631.                                                                                                                       | 5.6  | 90        |
| 30 | Graphene–carbon nanotube composite as an effective conducting scaffold to enhance the photoelectrochemical water oxidation activity of a hematite film. RSC Advances, 2012, 2, 9415.                                                               | 3.6  | 88        |
| 31 | Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding. Energy and Environmental Science, 2012, 5, 6375-6382.                                                                             | 30.8 | 86        |
| 32 | Anionâ€Đoped Mixed Metal Oxide Nanostructures Derived from Layered Double Hydroxide as Visible<br>Light Photocatalysts. Advanced Functional Materials, 2013, 23, 2348-2356.                                                                        | 14.9 | 86        |
| 33 | Mo ompound/CNTâ€Graphene Composites as Efficient Catalytic Electrodes for Quantumâ€Đot‧ensitized<br>Solar Cells. Advanced Energy Materials, 2014, 4, 1300775.                                                                                      | 19.5 | 84        |
| 34 | Demonstration of a 50 cm <sup>2</sup> BiVO <sub>4</sub> tandem<br>photoelectrochemical-photovoltaic water splitting device. Sustainable Energy and Fuels, 2019, 3,<br>2366-2379.                                                                   | 4.9  | 84        |
| 35 | Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing.<br>Scientific Reports, 2014, 4, 5492.                                                                                                            | 3.3  | 76        |
| 36 | Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production. Science Advances, 2020, 6, eaaz3944.                                                                                                          | 10.3 | 76        |

JI-WOOK JANG

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Self-assembled foam-like graphene networks formed through nucleate boiling. Scientific Reports, 2013, 3, 1396.                                                                                                                 | 3.3  | 75        |
| 38 | A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling. Scientific<br>Reports, 2013, 3, 1960.                                                                                                | 3.3  | 75        |
| 39 | Enhanced Photocatalytic Hydrogen Production from Waterâ^'Methanol Solution by Nickel<br>Intercalated into Titanate Nanotube. Journal of Physical Chemistry C, 2009, 113, 8990-8996.                                            | 3.1  | 72        |
| 40 | High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Applied Catalysis B: Environmental, 2021, 284, 119690.                                        | 20.2 | 69        |
| 41 | Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nature<br>Communications, 2019, 10, 5123.                                                                                           | 12.8 | 67        |
| 42 | Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. Journal of Catalysis, 2014, 317, 126-134.                                                                   | 6.2  | 65        |
| 43 | Unassisted photocatalytic H2O2 production under visible light by fluorinated polymer-TiO2 heterojunction. Chemical Engineering Journal, 2021, 418, 129346.                                                                     | 12.7 | 63        |
| 44 | Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system.<br>Nature Catalysis, 2022, 5, 37-44.                                                                                            | 34.4 | 58        |
| 45 | Photocatalytic overall water splitting with dual-bed system under visible light irradiation.<br>International Journal of Hydrogen Energy, 2009, 34, 3243-3249.                                                                 | 7.1  | 51        |
| 46 | TiN Nanoparticles on CNT–Graphene Hybrid Support as Nobleâ€Metalâ€Free Counter Electrode for<br>Quantumâ€Dotâ€Sensitized Solar Cells. ChemSusChem, 2013, 6, 261-267.                                                           | 6.8  | 51        |
| 47 | Large-Scale Fabrication of Sub-20-nm-Diameter ZnO Nanorod Arrays at Room Temperature and Their<br>Photocatalytic Activity. Journal of Physical Chemistry C, 2009, 113, 10452-10458.                                            | 3.1  | 50        |
| 48 | Formation of Amorphous Zinc Citrate Spheres and Their Conversion to Crystalline ZnO<br>Nanostructures. Langmuir, 2011, 27, 371-378.                                                                                            | 3.5  | 49        |
| 49 | Single-Crystalline Thin Films for Studying Intrinsic Properties of<br>BiFeO <sub>3</sub> –SrTiO <sub>3</sub> Solid Solution Photoelectrodes in Solar Energy Conversion.<br>Chemistry of Materials, 2015, 27, 6635-6641.        | 6.7  | 44        |
| 50 | Simultaneous Synthesis of Al-Doped ZnO Nanoneedles and Zinc Aluminum Hydroxides through Use of<br>a Seed Layer. Crystal Growth and Design, 2008, 8, 4553-4558.                                                                 | 3.0  | 42        |
| 51 | Solution-based fabrication of ZnO/ZnSe heterostructure nanowire arrays for solar energy conversion. Journal of Materials Chemistry, 2011, 21, 17816.                                                                           | 6.7  | 40        |
| 52 | An exceptionally facile method to produce layered double hydroxides on a conducting substrate and<br>their application for solar water splitting without an external bias. Energy and Environmental<br>Science, 2014, 7, 2301. | 30.8 | 37        |
| 53 | Tailorable Au Nanoparticles Embedded in Epitaxial TiO <sub>2</sub> Thin Films for Tunable Optical<br>Properties. ACS Applied Materials & Interfaces, 2018, 10, 32895-32902.                                                    | 8.0  | 34        |
| 54 | Phosphomolybdic Acid as a Catalyst for Oxidative Valorization of Biomass and Its Application as an<br>Alternative Electron Source. ACS Catalysis, 2020, 10, 2060-2068.                                                         | 11.2 | 33        |

JI-WOOK JANG

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Immobilizing single atom catalytic sites onto highly reduced carbon hosts: Fe–N <sub>4</sub> /CNT as a<br>durable oxygen reduction catalyst for Na–air batteries. Journal of Materials Chemistry A, 2020, 8,<br>18891-18902.    | 10.3 | 31        |
| 56 | Self-Assembled Heteroepitaxial Oxide Nanocomposite for Photoelectrochemical Solar Water<br>Oxidation. Chemistry of Materials, 2016, 28, 3017-3023.                                                                              | 6.7  | 28        |
| 57 | N-Doped ZnS Nanoparticles Prepared through an Inorganicâ^'Organic Hybrid Complex<br>ZnS·(piperazine) <sub>0.5</sub> . Journal of Physical Chemistry C, 2009, 113, 20445-20451.                                                  | 3.1  | 27        |
| 58 | Self-Assembled Gold Nanoparticle–Mixed Metal Oxide Nanocomposites for Self-Sensitized Dye<br>Degradation under Visible Light Irradiation. Langmuir, 2012, 28, 17530-17536.                                                      | 3.5  | 27        |
| 59 | Photocatalytic Synthesis of Pure and Waterâ€Dispersible Graphene Monosheets. Chemistry - A European<br>Journal, 2012, 18, 2762-2767.                                                                                            | 3.3  | 27        |
| 60 | Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.<br>Nanoscale, 2010, 2, 2199.                                                                                                     | 5.6  | 26        |
| 61 | Nature of Nitrogen Incorporation in BiVO4Photoanodes through Chemical and Physical Methods.<br>Solar Rrl, 2020, 4, 1900290.                                                                                                     | 5.8  | 23        |
| 62 | Unassisted selective solar hydrogen peroxide production by an oxidised buckypaper-integrated perovskite photocathode. Nature Communications, 2021, 12, 6644.                                                                    | 12.8 | 23        |
| 63 | Effects of Postannealing Process on the Properties of RuO <sub>2</sub> Films and Their Performance<br>As Electrodes in Organic Thin Film Transistors or Solar Cells. ACS Applied Materials & Interfaces,<br>2012, 4, 4588-4594. | 8.0  | 21        |
| 64 | Selective, Stable, Biasâ€Free, and Efficient Solar Hydrogen Peroxide Production on Inorganic Layered<br>Materials. Advanced Functional Materials, 2022, 32, .                                                                   | 14.9 | 19        |
| 65 | Strong O 2p–Fe 3d Hybridization Observed in Solution-Grown Hematite Films by Soft X-ray<br>Spectroscopies. Journal of Physical Chemistry B, 2018, 122, 927-932.                                                                 | 2.6  | 18        |
| 66 | In-situ synthesis, local structure, photoelectrochemical property of Fe-intercalated titanate nanotube. International Journal of Hydrogen Energy, 2012, 37, 11081-11089.                                                        | 7.1  | 12        |
| 67 | Photocatalytic selective oxidation of the terminal methyl group of dodecane with molecular oxygen over atomically dispersed Ti in a mesoporous SiO2 matrix. Green Chemistry, 2013, 15, 3387.                                    | 9.0  | 10        |
| 68 | A method for synthesizing ZnO–carbonaceous species nanocomposites, and their conversion to<br>quasi-single crystal mesoporous ZnO nanostructures. RSC Advances, 2012, 2, 566-572.                                               | 3.6  | 8         |
| 69 | Facile fabrication of two-dimensional inorganic nanostructures and their conjugation to nanocrystals. Journal of Materials Chemistry C, 2013, 1, 4497.                                                                          | 5.5  | 8         |
| 70 | Alkali-Metal-Mediated Reversible Chemical Hydrogen Storage Using Seawater. Jacs Au, 2021, 1, 2339-2348.                                                                                                                         | 7.9  | 6         |
| 71 | A Method for Modifying the Crystalline Nature and Texture of ZnO Nanostructure Surfaces. Crystal<br>Growth and Design, 2011, 11, 5615-5620.                                                                                     | 3.0  | 5         |
| 72 | Light-Induced Cleaning of CdS and ZnS Nanoparticles: Superiority to Annealing as a Postsynthetic<br>Treatment of Functional Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 15427-15431.                             | 3.1  | 3         |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Photochemistry: A Stable and Efficient Hematite Photoanode in a Neutral Electrolyte for Solar Water<br>Splitting: Towards Stability Engineering (Adv. Energy Mater. 13/2014). Advanced Energy Materials, 2014,<br>4, n/a-n/a. | 19.5 | 3         |
| 74 | Spontaneous stepwise formation of polar-facet-dominant ZnO crystals for enhanced catalytic H2O2 generation. Applied Surface Science, 2021, 561, 150061.                                                                       | 6.1  | 3         |