David Hammer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7779095/publications.pdf Version: 2024-02-01

DAVID HAMMED

#	Article	IF	CITATIONS
1	Epistemological Beliefs in Introductory Physics. Cognition and Instruction, 1994, 12, 151-183.	2.9	371
2	Student resources for learning introductory physics. American Journal of Physics, 2000, 68, S52-S59.	0.7	351
3	Tapping Epistemological Resources for Learning Physics. Journal of the Learning Sciences, 2003, 12, 53-90.	2.9	325
4	Recognizing mechanistic reasoning in student scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 2008, 92, 499-525.	3.0	269
5	On the substance of a sophisticated epistemology. Science Education, 2001, 85, 554-567.	3.0	254
6	Framing for scientific argumentation. Journal of Research in Science Teaching, 2012, 49, 68-94.	3.3	251
7	More than misconceptions: Multiple perspectives on student knowledge and reasoning, and an appropriate role for education research. American Journal of Physics, 1996, 64, 1316-1325.	0.7	232
8	Misconceptions or P-Prims: How May Alternative Perspectives of Cognitive Structure Influence Instructional Perceptions and Intentions. Journal of the Learning Sciences, 1996, 5, 97-127.	2.9	226
9	Novice Teachers' Attention to Student Thinking. Journal of Teacher Education, 2009, 60, 142-154.	3.5	222
10	Epistemological Resources: Applying a New Epistemological Framework to Science Instruction. Educational Psychologist, 2004, 39, 57-68.	9.0	187
11	The missing disciplinary substance of formative assessment. Journal of Research in Science Teaching, 2011, 48, 1109-1136.	3.3	186
12	Discovery Learning and Discovery Teaching. Cognition and Instruction, 1997, 15, 485-529.	2.9	178
13	Student Behavior and Epistemological Framing: Examples from Collaborative Active-Learning Activities in Physics. Cognition and Instruction, 2009, 27, 147-174.	2.9	172
14	The Case for Dynamic Models of Learners' Ontologies in Physics. Journal of the Learning Sciences, 2010, 19, 285-321.	2.9	153
15	Attending to student epistemological framing in a science classroom. Science Education, 2010, 94, 506-524.	3.0	136
16	Multiple Epistemological Coherences in an Eighth-Grade Discussion of the Rock Cycle. Journal of the Learning Sciences, 2006, 15, 261-292.	2.9	134
17	Reinventing college physics for biologists: Explicating an epistemological curriculum. American Journal of Physics, 2009, 77, 629-642.	0.7	127
18	Learning to Feel Like a Scientist. Science Education, 2016, 100, 189-220.	3.0	124

David Hammer

#	Article	IF	CITATIONS
19	Confusing Claims for Data: A Critique of Common Practices for Presenting Qualitative Research on Learning. Journal of the Learning Sciences, 2014, 23, 37-46.	2.9	112
20	Making classroom assessment more accountable to scientific reasoning: A case for attending to mechanistic thinking. Science Education, 2009, 93, 875-891.	3.0	107
21	Epistemological resources and framing: a cognitive framework for helping teachers interpret and respond to their students' epistemologies. , 2010, , 409-434.		100
22	Dynaturtle Revisited: Learning Physics Through Collaborative Design of a Computer Model. Interactive Learning Environments, 1993, 3, 91-118.	6.4	82
23	Two approaches to learning physics. Physics Teacher, 1989, 27, 664-670.	0.3	81
24	Engaging in Science: A Feeling for the Discipline. Journal of the Learning Sciences, 2016, 25, 156-202.	2.9	70
25	Looking for coherence in science curriculum. Science Education, 2017, 101, 929-943.	3.0	70
26	Epistemological considerations in teaching introductory physics. Science Education, 1995, 79, 393-413.	3.0	66
27	Implications of Complexity for Research on Learning Progressions. Science Education, 2015, 99, 424-431.	3.0	53
28	Student Inquiry in a Physics Class Discussion. Cognition and Instruction, 1995, 13, 401-430.	2.9	52
29	Examining Young Students' Problem Scoping in Engineering Design. Journal of Pre-College Engineering Education Research, 2014, 4, .	0.6	52
30	Children's analogical reasoning in a third-grade science discussion. Science Education, 2006, 90, 316-330.	3.0	51
31	Positioning as notâ€understanding: The value of showing uncertainty for engaging in science. Journal of Research in Science Teaching, 2018, 55, 573-599.	3.3	43
32	Learning and teaching science as inquiry: A case study of elementary school teachers' investigations of light. Science Education, 2005, 89, 1007-1042.	3.0	39
33	Problematizing as a scientific endeavor. Physical Review Physics Education Research, 2017, 13, .	2.9	39
34	Beyond "asking questions― Problematizing as a disciplinary activity. Journal of Research in Science Teaching, 2018, 55, 982-998.	3.3	37
35	Students' beliefs about conceptual knowledge in introductory physics. International Journal of Science Education, 1994, 16, 385-403.	1.9	35
36	"lt's Scary but It's Also Excitingâ€: Evidence of Meta-Affective Learning in Science. Cognition and Instruction, 2019, 37, 73-92.	2.9	32

David Hammer

#	Article	IF	CITATIONS
37	Case study of a successful learner's epistemological framings of quantum mechanics. Physical Review Physics Education Research, 2017, 13, .	2.9	28
38	Dataâ€based conjectures for supporting responsive teaching in engineering design with elementary teachers. Science Education, 2018, 102, 548-570.	3.0	27
39	Practices of Inquiry in Teaching and Research. Cognition and Instruction, 2001, 19, 441-478.	2.9	26
40	Students' Framings and Their Participation in Scientific Argumentation. , 2012, , 73-93.		19
41	Attending and Responding to Student Thinking in Science. American Biology Teacher, 2012, 74, 158-162.	0.2	16
42	Stable Beginnings in Engineering Design. Journal of Pre-College Engineering Education Research, 2016, 6, .	0.6	16
43	Conceptual Change in Physics. , 0, , .		15
44	On Static and Dynamic Intuitive Ontologies. Journal of the Learning Sciences, 2011, 20, 163-168.	2.9	14
45	The tension between patternâ€seeking and mechanistic reasoning in explanation construction: A case from Chinese elementary science classroom. Science Education, 2020, 104, 1071-1099.	3.0	12
46	"Well that's how the kids feel!â€â€"Epistemic empathy as a driver of responsive teaching. Journal of Research in Science Teaching, 2022, 59, 223-251.	3.3	12
47	Targeting disciplinary practices in an online learning environment. Science Education, 2018, 102, 668-692.	3.0	10
48	Idiosyncratic cases and hopes for general validity: what education research might learn from ecology / Casos idiosincrásicos y expectativas de validez general: lo que la investigaciA³n en educación puede aprender de la ecologÃa. Infancia Y Aprendizaje, 2018, 41, 625-673.	0.9	10
49	Odd ideas about learning science: A response to Osborne. Science Education, 2019, 103, 1289-1293.	3.0	10
50	The Dynamics of Students' Behaviors and Reasoning during Collaborative Physics Tutorial Sessions. , 2007, , .		6
51	Teaching Assistant Attention and Responsiveness to Student Reasoning in Written Work. CBE Life Sciences Education, 2018, 17, ar25.	2.3	6
52	Elementary School Engineering for Fictional Clients in Children's Literature. Contemporary Trends and Issues in Science Education, 2016, , 263-291.	0.5	5
53	Disciplinary significance of social caring in postsecondary science, technology, engineering, and mathematics. Physical Review Physics Education Research, 2021, 17,	2.9	4
54	Physics for first-graders?. Science Education, 1999, 83, 797-799.	3.0	3

#	Article	IF	CITATIONS
55	The Beginnings of Energy in Third Gradersâ \in $^{\mathrm{M}}$ Reasoning. , 2010, , .		3
56	Coordination of Mathematics and Physical Resources by Physics Graduate Students. , 2007, , .		2
57	Meta-affective learning in an introductory physics course. , 0, , .		2
58	Fourth Graders' Framing of an Electric Circuits Task. , 2009, , .		0
59	Discovery Learning. , 2013, , 1-1.		0
60	Discovery Learning. , 2015, , 335-336.		0