Robert A Houze Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7779031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoscale convective systems. Reviews of Geophysics, 2004, 42, .	23.0	953
2	Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. Journal of Applied Meteorology and Climatology, 1995, 34, 1978-2007.	1.7	753
3	Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part II: Frequency Distributions of Vertical Velocity, Reflectivity, and Differential Reflectivity. Monthly Weather Review, 1995, 123, 1941-1963.	1.4	514
4	Stratiform Rain in the Tropics as Seen by the TRMM Precipitation Radar*. Journal of Climate, 2003, 16, 1739-1756.	3.2	416
5	Structure and Dynamics of a Tropical Squall–Line System. Monthly Weather Review, 1977, 105, 1540-1567.	1.4	411
6	Observed structure of mesoscale convective systems and implications for large-scale heating. Quarterly Journal of the Royal Meteorological Society, 1989, 115, 425-461.	2.7	367
7	Convection in GATE. Reviews of Geophysics, 1981, 19, 541-576.	23.0	345
8	The Tropical Dynamical Response to Latent Heating Estimates Derived from the TRMM Precipitation Radar. Journals of the Atmospheric Sciences, 2004, 61, 1341-1358.	1.7	326
9	Interpretation of Doppler Weather Radar Displays of Midlatitude Mesoscale Convective Systems. Bulletin of the American Meteorological Society, 1989, 70, 608-619.	3.3	318
10	Mesoscale Organization of Springtime Rainstorms in Oklahoma. Monthly Weather Review, 1990, 118, 613-654.	1.4	281
11	Some Implications of the Mesoscale Circulations in Tropical Cloud Clusters for Large-Scale Dynamics and Climate. Journals of the Atmospheric Sciences, 1984, 41, 113-121.	1.7	271
12	The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Reviews of Geophysics, 2015, 53, 994-1021.	23.0	265
13	Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1389-1411.	2.7	246
14	The Structure and Evolution of Convection in a Tropical Cloud Cluster. Journals of the Atmospheric Sciences, 1979, 36, 437-457.	1.7	223
15	More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nature Communications, 2016, 7, 13429.	12.8	191
16	Rear Inflow in Squall Lines with Trailing Stratiform Precipitation. Monthly Weather Review, 1987, 115, 2869-2889.	1.4	180
17	Mesoscale Air Motions Associated with a Tropical Squall Line. Monthly Weather Review, 1982, 110, 118-135.	1.4	175
18	Radar Characteristics of Tropical Convection Observed During GATE: Mean Properties and Trends Over the Summer Season, Monthly Weather Review, 1977, 105, 964-980	1.4	168

Robert A Houze Jr

#	Article	IF	CITATIONS
19	Structure and Evolution of Mesoscale Convective Systems: Sensitivity to Cloud Microphysics in Convectionâ€Permitting Simulations Over the United States. Journal of Advances in Modeling Earth Systems, 2018, 10, 1470-1494.	3.8	145
20	Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data. Journal of Climate, 2010, 23, 5864-5888.	3.2	132
21	100 Years of Research on Mesoscale Convective Systems. Meteorological Monographs, 2018, 59, 17.1-17.54.	5.0	112
22	A Diagnostic Modelling Study of the Trailing Stratiform Region of a Midlatitude Squall Line. Journals of the Atmospheric Sciences, 1987, 44, 2640-2656.	1.7	101
23	Evolution of the Population of Precipitating Convective Systems over the Equatorial Indian Ocean in Active Phases of the Madden–Julian Oscillation. Journals of the Atmospheric Sciences, 2013, 70, 2713-2725.	1.7	100
24	Spatiotemporal Characteristics and Large-Scale Environments of Mesoscale Convective Systems East of the Rocky Mountains. Journal of Climate, 2019, 32, 7303-7328.	3.2	91
25	A Global Highâ€Resolution Mesoscale Convective System Database Using Satelliteâ€Derived Cloud Tops, Surface Precipitation, and Tracking. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034202.	3.3	88
26	The Distribution of Convective and Mesoscale Precipitation in GATE Radar Echo Patterns. Monthly Weather Review, 1979, 107, 1370-1381.	1.4	76
27	Contrasting Spring and Summer Large-Scale Environments Associated with Mesoscale Convective Systems over the U.S. Great Plains. Journal of Climate, 2019, 32, 6749-6767.	3.2	64
28	Environments of Longâ€Lived Mesoscale Convective Systems Over the Central United States in Convection Permitting Climate Simulations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,288.	3.3	54
29	Further Analysis of the Composite Wind and Thermodynamic Structure of the 12 September GATE Squall Line. Monthly Weather Review, 1985, 113, 1241-1260.	1.4	46
30	Diagnosis of Cloud Mass and Heat Fluxes from Radar and Synoptic Data. Journals of the Atmospheric Sciences, 1980, 37, 754-773.	1.7	44
31	Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles. Journals of the Atmospheric Sciences, 2012, 69, 2662-2681.	1.7	34
32	Variation of Lightning and Convective Rain Fraction in Mesoscale Convective Systems of the MJO. Journals of the Atmospheric Sciences, 2015, 72, 1932-1944.	1.7	29
33	Latent heating characteristics of the MJO computed from TRMM Observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1322-1334.	3.3	26
34	The Characteristics of Tropical and Midlatitude Mesoscale Convective Systems as Revealed by Radar Wind Profilers. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4601-4619.	3.3	25
35	Extreme Convective Storms Over High‣atitude Continental Areas Where Maximum Warming Is Occurring. Geophysical Research Letters, 2019, 46, 4059-4065.	4.0	21
36	A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds. Journal of Advances in Modeling Earth Systems, 2018, 10, 448-465.	3.8	19

#	Article	IF	CITATIONS
37	The Diurnal and Microphysical Characteristics of MJO Rain Events during DYNAMO. Journals of the Atmospheric Sciences, 2019, 2019, 67-80.	1.7	6
38	Using radar observations to evaluate 3-D radar echo structure simulated by the Energy Exascale Earth System Model (E3SM) versionÂ1. Geoscientific Model Development, 2021, 14, 719-734.	3.6	5