## Michael Unser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7778413/publications.pdf Version: 2024-02-01



MICHAEL LINSED

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Convex optimization in sums of Banach spaces. Applied and Computational Harmonic Analysis, 2022, 56, 1-25.                                                                                      | 1.1 | 11        |
| 2  | Learning of Continuous and Piecewise-Linear Functions With Hessian Total-Variation Regularization.<br>IEEE Open Journal of Signal Processing, 2022, 3, 36-48.                                   | 2.3 | 5         |
| 3  | Sparsest piecewise-linear regression of one-dimensional data. Journal of Computational and Applied<br>Mathematics, 2022, 406, 114044.                                                           | 1.1 | 9         |
| 4  | A constrained method for lensless coherent imaging of thin samples. Applied Optics, 2022, 61, F34.                                                                                              | 0.9 | 3         |
| 5  | Sparsest Univariate Learning Models Under Lipschitz Constraint. IEEE Open Journal of Signal<br>Processing, 2022, 3, 140-154.                                                                    | 2.3 | 1         |
| 6  | Steer'n'Detect: fast 2D template detection with accurate orientation estimation. Bioinformatics, 2022, 38, 3146-3148.                                                                           | 1.8 | 1         |
| 7  | Bona Fide Riesz Projections for Density Estimation. , 2022, , .                                                                                                                                 |     | 1         |
| 8  | Coupled Splines for Sparse Curve Fitting. IEEE Transactions on Image Processing, 2022, 31, 4707-4718.                                                                                           | 6.0 | 2         |
| 9  | A Unifying Representer Theorem for Inverse Problems and Machine Learning. Foundations of Computational Mathematics, 2021, 21, 941-960.                                                          | 1.5 | 25        |
| 10 | Time-Dependent Deep Image Prior for Dynamic MRI. IEEE Transactions on Medical Imaging, 2021, 40, 3337-3348.                                                                                     | 5.4 | 51        |
| 11 | Multikernel Regression with Sparsity Constraint. SIAM Journal on Mathematics of Data Science, 2021, 3, 201-224.                                                                                 | 1.0 | 8         |
| 12 | Active Subdivision Surfaces for the Semiautomatic Segmentation of Biomedical Volumes. IEEE<br>Transactions on Image Processing, 2021, 30, 5739-5753.                                            | 6.0 | 4         |
| 13 | CryoGAN: A New Reconstruction Paradigm for Single-Particle Cryo-EM Via Deep Adversarial Learning.<br>IEEE Transactions on Computational Imaging, 2021, 7, 759-774.                              | 2.6 | 36        |
| 14 | Principled Design and Implementation of Steerable Detectors. IEEE Transactions on Image Processing, 2021, 30, 4465-4478.                                                                        | 6.0 | 2         |
| 15 | Diffraction Tomography From Single-Molecule Localization Microscopy: Numerical Feasibility. , 2021, ,                                                                                           |     | 1         |
| 16 | Optimal-Transport-Based Metric For SMLM. , 2021, , .                                                                                                                                            |     | 1         |
| 17 | Graphic: Graph-Based Hierarchical Clustering For Single-Molecule Localization Microscopy. , 2021, , .                                                                                           |     | 0         |
| 18 | Deep Learning Enables Individual Xenograft Cell Classification in Histological Images by Analysis of<br>Contextual Features. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 101-112. | 1.0 | 5         |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Duality Mapping for Schatten Matrix Norms. Numerical Functional Analysis and Optimization, 2021, 42, 679-695.                                                         | 0.6 | 2         |
| 20 | Shortest-support multi-spline bases for generalized sampling. Journal of Computational and Applied Mathematics, 2021, 395, 113610.                                    | 1.1 | 0         |
| 21 | Optical diffraction tomography from single-molecule localization microscopy. Optics<br>Communications, 2021, 499, 127290.                                             | 1.0 | 1         |
| 22 | Continuous-Domain Formulation of Inverse Problems for Composite Sparse-Plus-Smooth Signals. IEEE<br>Open Journal of Signal Processing, 2021, 2, 545-558.              | 2.3 | 1         |
| 23 | Robust Phase Unwrapping via Deep Image Prior for Quantitative Phase Imaging. IEEE Transactions on<br>Image Processing, 2021, 30, 7025-7037.                           | 6.0 | 30        |
| 24 | Gaussian and sparse processes are limits of generalized Poisson processes. Applied and Computational<br>Harmonic Analysis, 2020, 48, 1045-1065.                       | 1.1 | 5         |
| 25 | The \$\$n\$\$n-term Approximation of Periodic Generalized Lévy Processes. Journal of Theoretical<br>Probability, 2020, 33, 180-200.                                   | 0.4 | 5         |
| 26 | A method for assessing the fidelity of optical diffraction tomography reconstruction methods using structured illumination. Optics Communications, 2020, 454, 124486. | 1.0 | 8         |
| 27 | Support and approximation properties of Hermite splines. Journal of Computational and Applied Mathematics, 2020, 368, 112503.                                         | 1.1 | 6         |
| 28 | Generating Sparse Stochastic Processes Using Matched Splines. IEEE Transactions on Signal<br>Processing, 2020, 68, 4397-4406.                                         | 3.2 | 2         |
| 29 | Continuous-Domain Signal Reconstruction Using \$L_{p}\$-Norm Regularization. IEEE Transactions on Signal Processing, 2020, 68, 4543-4554.                             | 3.2 | 12        |
| 30 | Adaptive Regularization for Three-Dimensional Optical Diffraction Tomography. , 2020, , .                                                                             |     | 6         |
| 31 | Hessian Splines for Scanning Transmission X-Ray Microscopy. , 2020, , .                                                                                               |     | 0         |
| 32 | A Note on BIBO Stability. IEEE Transactions on Signal Processing, 2020, 68, 5904-5913.                                                                                | 3.2 | 3         |
| 33 | Deep Neural Networks With Trainable Activations and Controlled Lipschitz Constant. IEEE<br>Transactions on Signal Processing, 2020, 68, 4688-4699.                    | 3.2 | 16        |
| 34 | Learning Activation Functions in Deep (Spline) Neural Networks. IEEE Open Journal of Signal<br>Processing, 2020, 1, 295-309.                                          | 2.3 | 19        |
| 35 | Dictionary Learning for Two-Dimensional Kendall Shapes. SIAM Journal on Imaging Sciences, 2020, 13, 141-175.                                                          | 1.3 | 3         |
| 36 | Three-Dimensional Optical Diffraction Tomography With Lippmann-Schwinger Model. IEEE<br>Transactions on Computational Imaging, 2020, 6, 727-738.                      | 2.6 | 35        |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Joint Angular Refinement and Reconstruction for Single-Particle Cryo-EM. IEEE Transactions on Image Processing, 2020, 29, 6151-6163.                                           | 6.0 | 11        |
| 38 | Multi-CryoGAN: Reconstruction of Continuous Conformations in Cryo-EM Using Generative Adversarial Networks. Lecture Notes in Computer Science, 2020, , 429-444.                | 1.0 | 18        |
| 39 | Deep-learning projector for optical diffraction tomography. Optics Express, 2020, 28, 3905.                                                                                    | 1.7 | 19        |
| 40 | Scaling Limits of Solutions of Linear Stochastic Differential Equations Driven by Lévy White Noises.<br>Journal of Theoretical Probability, 2019, 32, 1166-1189.               | 0.4 | 5         |
| 41 | Deep Spline Networks with Control of Lipschitz Regularity. , 2019, , .                                                                                                         |     | 2         |
| 42 | Deforming Tessellations For The Segmentation Of Cell Aggregates. , 2019, , .                                                                                                   |     | 0         |
| 43 | Closed-Form Expression Of The Fourier Ring-Correlation For Single-Molecule Localization Microscopy. , 2019, , .                                                                |     | 1         |
| 44 | Normal-Based Interpolating Subdivision for the Geometric Representation of Deformable Models. , 2019, , .                                                                      |     | 0         |
| 45 | Texture-driven parametric snakes for semi-automatic image segmentation. Computer Vision and Image<br>Understanding, 2019, 188, 102793.                                         | 3.0 | 7         |
| 46 | Pocket guide to solve inverse problems with GlobalBiolm. Inverse Problems, 2019, 35, 104006.                                                                                   | 1.0 | 33        |
| 47 | Solving Continuous-domain Problems Exactly with Multiresolution B-splines. , 2019, , .                                                                                         |     | 2         |
| 48 | B-Spline-Based Exact Discretization of Continuous-Domain Inverse Problems With Generalized TV<br>Regularization. IEEE Transactions on Information Theory, 2019, 65, 4457-4470. | 1.5 | 17        |
| 49 | Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nature Methods, 2019, 16, 387-395.                                      | 9.0 | 251       |
| 50 | Beyond Wiener's Lemma: Nuclear Convolution Algebras and the Inversion of Digital Filters. Journal of<br>Fourier Analysis and Applications, 2019, 25, 2037-2063.                | 0.5 | 3         |
| 51 | Angular Accuracy of Steerable Feature Detectors. SIAM Journal on Imaging Sciences, 2019, 12, 344-371.                                                                          | 1.3 | 2         |
| 52 | Inner-Loop-Free Admm For Cryo-Em. , 2019, , .                                                                                                                                  |     | 5         |
| 53 | Optimal Spline Generators for Derivative Sampling. , 2019, , .                                                                                                                 |     | 0         |
| 54 | Hybrid-Spline Dictionaries for Continuous-Domain Inverse Problems. IEEE Transactions on Signal Processing, 2019, 67, 5824-5836.                                                | 3.2 | 12        |

| #  | Article                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Biomedical Image Reconstruction: From the Foundations to Deep Neural Networks. Foundations and<br>Trends in Signal Processing, 2019, 13, 283-357.                | 12.0 | 13        |
| 56 | Approximation of Non-decaying Signals from Shift-Invariant Subspaces. Journal of Fourier Analysis and Applications, 2019, 25, 633-660.                           | 0.5  | 2         |
| 57 | Computational Super-Sectioning for Single-Slice Structured-Illumination Microscopy. IEEE<br>Transactions on Computational Imaging, 2019, 5, 240-250.             | 2.6  | 9         |
| 58 | Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nature Methods, 2019, 16, 71-74.                                                            | 9.0  | 335       |
| 59 | Joint density map and continuous angular refinement in cryo-electron microscopy. IS&T International<br>Symposium on Electronic Imaging, 2019, 2019, 133-1-133-5. | 0.3  | 0         |
| 60 | Reconstruction From Multiple Particles for 3D Isotropic Resolution in Fluorescence Microscopy. IEEE<br>Transactions on Medical Imaging, 2018, 37, 1235-1246.     | 5.4  | 15        |
| 61 | Learning Tomography Assessed Using Mie Theory. Physical Review Applied, 2018, 9, .                                                                               | 1.5  | 20        |
| 62 | Learning Convex Regularizers for Optimal Bayesian Denoising. IEEE Transactions on Signal Processing, 2018, 66, 1093-1105.                                        | 3.2  | 10        |
| 63 | A universal formula for generalized cardinal B-splines. Applied and Computational Harmonic Analysis, 2018, 45, 341-358.                                          | 1.1  | 1         |
| 64 | Landmark-Based Shape Encoding and Sparse-Dictionary Learning in the Continuous Domain. IEEE<br>Transactions on Image Processing, 2018, 27, 365-378.              | 6.0  | 4         |
| 65 | Compact in-line lensfree digital holographic microscope. Methods, 2018, 136, 17-23.                                                                              | 1.9  | 16        |
| 66 | Fast multiscale reconstruction for Cryo-EM. Journal of Structural Biology, 2018, 204, 543-554.                                                                   | 1.3  | 12        |
| 67 | Periodic Splines and Gaussian Processes for the Resolution of Linear Inverse Problems. IEEE<br>Transactions on Signal Processing, 2018, 66, 6047-6061.           | 3.2  | 8         |
| 68 | Imaging neural activity in the ventral nerve cord of behaving adult Drosophila. Nature<br>Communications, 2018, 9, 4390.                                         | 5.8  | 62        |
| 69 | Rotation Invariance and Directional Sensitivity: Spherical Harmonics versus Radiomics Features.<br>Lecture Notes in Computer Science, 2018, , 107-115.           | 1.0  | 4         |
| 70 | DiversePathsJ: diverse shortest paths for bioimage analysis. Bioinformatics, 2018, 34, 538-540.                                                                  | 1.8  | 2         |
| 71 | Region of interest X-ray computed tomography via corrected back projection. , 2018, , .                                                                          |      | 1         |
| 72 | Phaseless diffraction tomography with regularized beam propagation. , 2018, , .                                                                                  |      | 0         |

5

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Fast Piecewise-Affine Motion Estimation Without Segmentation. IEEE Transactions on Image Processing, 2018, 27, 5612-5624.                                                   | 6.0 | 10        |
| 74 | Continuous-Domain Solutions of Linear Inverse Problems With Tikhonov Versus Generalized TV<br>Regularization. IEEE Transactions on Signal Processing, 2018, 66, 4670-4684.  | 3.2 | 27        |
| 75 | Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering. Optics Express, 2018, 26, 2749.                          | 1.7 | 35        |
| 76 | CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction. IEEE Transactions on Medical Imaging, 2018, 37, 1440-1453.                                     | 5.4 | 291       |
| 77 | 3D BBPConvNet to reconstruct parallel MRI. , 2018, , .                                                                                                                      |     | 3         |
| 78 | Grid-Free Localization Algorithm Using Low-Rank Hankel Matrix for Super-Resolution Microscopy. IEEE<br>Transactions on Image Processing, 2018, 27, 4771-4786.               | 6.0 | 5         |
| 79 | Imaging complex objects using learning tomography. , 2018, , .                                                                                                              |     | 0         |
| 80 | A sampling theory for non-decaying signals. Applied and Computational Harmonic Analysis, 2017, 43, 76-93.                                                                   | 1.1 | 20        |
| 81 | On the Besov regularity of periodic Lévy noises. Applied and Computational Harmonic Analysis, 2017,<br>42, 21-36.                                                           | 1.1 | 15        |
| 82 | DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods, 2017, 115, 28-41.                                                                         | 1.9 | 417       |
| 83 | Steerable Wavelet Machines (SWM): Learning Moving Frames for Texture Classification. IEEE<br>Transactions on Image Processing, 2017, 26, 1626-1636.                         | 6.0 | 28        |
| 84 | Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression. Genes and Development, 2017, 31, 383-398. | 2.7 | 84        |
| 85 | Compressed sensing for STEM tomography. Ultramicroscopy, 2017, 179, 47-56.                                                                                                  | 0.8 | 24        |
| 86 | Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE Transactions on Image<br>Processing, 2017, 26, 4509-4522.                                           | 6.0 | 1,540     |
| 87 | Fast Segmentation From Blurred Data in 3D Fluorescence Microscopy. IEEE Transactions on Image Processing, 2017, 26, 4856-4870.                                              | 6.0 | 9         |
| 88 | High-Quality Parallel-Ray X-Ray CT Back Projection Using Optimized Interpolation. IEEE Transactions on<br>Image Processing, 2017, 26, 4639-4647.                            | 6.0 | 13        |
| 89 | Optimized Wavelet Denoising for Self-Similar ffl $\pm$ -Stable Processes. IEEE Transactions on Information Theory, 2017, , 1-1.                                             | 1.5 | 1         |
| 90 | Multiresolution Subdivision Snakes. IEEE Transactions on Image Processing, 2017, 26, 1188-1201.                                                                             | 6.0 | 22        |

| #   | Article                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | A non-stationary subdivision scheme for the construction of deformable models with sphere-like topology. Graphical Models, 2017, 94, 38-51.               | 1.1  | 20        |
| 92  | Splines Are Universal Solutions of Linear Inverse Problems with Generalized TV Regularization. SIAM Review, 2017, 59, 769-793.                            | 4.2  | 64        |
| 93  | Optical Tomography based on a nonlinear model that handles multiple scattering. , 2017, , .                                                               |      | 1         |
| 94  | General surface energy for spinal cord and aorta segmentation. , 2017, , .                                                                                |      | 1         |
| 95  | Closed-form alignment of active surface models using splines. , 2017, , .                                                                                 |      | 0         |
| 96  | Smooth shapes with spherical topology: Beyond traditional modeling, efficient deformation, and interaction. Computational Visual Media, 2017, 3, 199-215. | 10.8 | 3         |
| 97  | Multidimensional Lévy white noise in weighted Besov spaces. Stochastic Processes and Their<br>Applications, 2017, 127, 1599-1621.                         | 0.4  | 12        |
| 98  | Generalized Poisson Summation Formulas for Continuous Functions of Polynomial Growth. Journal of Fourier Analysis and Applications, 2017, 23, 442-461.    | 0.5  | 8         |
| 99  | Convolutional Neural Networks for Inverse Problems in Imaging: A Review. IEEE Signal Processing<br>Magazine, 2017, 34, 85-95.                             | 4.6  | 496       |
| 100 | Shape Projectors for Landmark-Based Spline Curves. IEEE Signal Processing Letters, 2017, 24, 1517-1521.                                                   | 2.1  | 0         |
| 101 | Compact lensless phase imager. Optics Express, 2017, 25, 4438.                                                                                            | 1.7  | 8         |
| 102 | Efficient inversion of multiple-scattering model for optical diffraction tomography. Optics Express, 2017, 25, 21786.                                     | 1.7  | 42        |
| 103 | GlobalBiolm: A Unifying Computational Framework for Solving Inverse Problems. , 2017, , .                                                                 |      | 15        |
| 104 | FlyLimbTracker: An active contour based approach for leg segment tracking in unmarked, freely behaving Drosophila. PLoS ONE, 2017, 12, e0173433.          | 1.1  | 35        |
| 105 | Diverse M-Best Solutions by Dynamic Programming. Lecture Notes in Computer Science, 2017, , 255-267.                                                      | 1.0  | 0         |
| 106 | Slice-By-Slice Versus Fully 3D Reconstruction for Parallel-Beam X-ray Microtomography. , 2016, , .                                                        |      | 0         |
| 107 | Superresolution with Optically-Motivated Blind Deconvolution. , 2016, , .                                                                                 |      | 1         |
| 108 | Fast 3D reconstruction method for differential phase contrast X-ray CT. Optics Express, 2016, 24, 14564.                                                  | 1.7  | 24        |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Transforms and Operators for Directional Bioimage Analysis: A Survey. Advances in Anatomy,<br>Embryology and Cell Biology, 2016, 219, 69-93.                                                                                 | 1.0 | 322       |
| 110 | An Inner-Product Calculus for Periodic Functions and Curves. IEEE Signal Processing Letters, 2016, 23, 878-882.                                                                                                              | 2.1 | 7         |
| 111 | Characterization of the Solution of Linear Inverse Problems with Generalized TV Regularization. , 2016, , .                                                                                                                  |     | Ο         |
| 112 | Isotropic resolution in fluorescence imaging by single particle reconstruction. , 2016, , .                                                                                                                                  |     | 0         |
| 113 | Smoothly deformable spheres. , 2016, , .                                                                                                                                                                                     |     | 1         |
| 114 | Exact Algorithms for \$L^1\$-TV Regularization of Real-Valued or Circle-Valued Signals. SIAM Journal of Scientific Computing, 2016, 38, A614-A630.                                                                           | 1.3 | 15        |
| 115 | Hermite Snakes With Control of Tangents. IEEE Transactions on Image Processing, 2016, 25, 2803-2816.                                                                                                                         | 6.0 | 20        |
| 116 | SpotCaliper: fast wavelet-based spot detection with accurate size estimation. Bioinformatics, 2016, 32, 1278-1280.                                                                                                           | 1.8 | 9         |
| 117 | Maximally Localized Radial Profiles for Tight Steerable Wavelet Frames. IEEE Transactions on Image<br>Processing, 2016, 25, 2275-2287.                                                                                       | 6.0 | 8         |
| 118 | Proximity operators for phase retrieval. Applied Optics, 2016, 55, 7412.                                                                                                                                                     | 2.1 | 30        |
| 119 | On the Continuous Steering of the Scale of Tight Wavelet Frames. SIAM Journal on Imaging Sciences, 2016, 9, 1042-1062.                                                                                                       | 1.3 | 0         |
| 120 | Representer Theorems for Sparsity-Promoting <inline-formula> <tex-math<br>notation="LaTeX"&gt;\$ell _{1}\$  </tex-math<br></inline-formula> Regularization. IEEE<br>Transactions on Information Theory, 2016, 62, 5167-5180. | 1.5 | 30        |
| 121 | Local refinement for 3D deformable parametric surfaces. , 2016, , .                                                                                                                                                          |     | Ο         |
| 122 | Joint absorption and phase retrieval in grating-based x-ray radiography. Optics Express, 2016, 24, 7253.                                                                                                                     | 1.7 | 5         |
| 123 | MMSE denoising of sparse and non-Gaussian AR(1) processes. , 2016, , .                                                                                                                                                       |     | 2         |
| 124 | A Guided Tour of Selected Image Processing and Analysis Methods for Fluorescence and Electron<br>Microscopy. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 6-30.                                           | 7.3 | 52        |
| 125 | Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization. IEEE Transactions on Computational Imaging, 2016, 2, 59-70.                                                                    | 2.6 | 140       |
| 126 | Reconstruction From Multiple Poses in Fluorescence Imaging: Proof of Concept. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 61-70.                                                                         | 7.3 | 3         |

| #   | Article                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Design of Steerable Wavelets to Detect Multifold Junctions. IEEE Transactions on Image Processing, 2016, 25, 643-657.                                        | 6.0 | 15        |
| 128 | Introduction to the Issue on Advanced Signal Processing in Microscopy and Cell Imaging. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 3-5. | 7.3 | 3         |
| 129 | Variational Phase Imaging Using the Transport-of-Intensity Equation. IEEE Transactions on Image Processing, 2016, 25, 807-817.                               | 6.0 | 28        |
| 130 | Analysis of <i>S. pombe</i> SIN protein SPB-association reveals two genetically separable states of the SIN. Journal of Cell Science, 2015, 128, 741-54.     | 1.2 | 12        |
| 131 | Optimized steerable wavelets for texture analysis of lung tissue in 3-D CT: Classification of usual interstitial pneumonia. , 2015, , .                      |     | 16        |
| 132 | Interpretation of continuous-time autoregressive processes as random exponential splines. , 2015, , .                                                        |     | 2         |
| 133 | Generalized poisson summation formula for tempered distributions. , 2015, , .                                                                                |     | 1         |
| 134 | Compressibility of symmetric-α-stable processes. , 2015, , .                                                                                                 |     | 1         |
| 135 | A Learning Approach to Optical Tomography. , 2015, , .                                                                                                       |     | 1         |
| 136 | Locally refinable parametric snakes. , 2015, , .                                                                                                             |     | 3         |
| 137 | New parametric 3D snake for medical segmentation of structures with cylindrical topology. , 2015, , .                                                        |     | 5         |
| 138 | Template-Free Wavelet-Based Detection of Local Symmetries. IEEE Transactions on Image Processing, 2015, 24, 3009-3018.                                       | 6.0 | 12        |
| 139 | Structure Tensor Total Variation. SIAM Journal on Imaging Sciences, 2015, 8, 1090-1122.                                                                      | 1.3 | 102       |
| 140 | Fast detection and refined scale estimation using complex isotropic wavelets. , 2015, , .                                                                    |     | 1         |
| 141 | Tip-seeking active contours for bioimage segmentation. , 2015, , .                                                                                           |     | 3         |
| 142 | Similarity-based shape priors for 2D spline snakes. , 2015, , .                                                                                              |     | 2         |
| 143 | Sampling and (sparse) stochastic processes: A tale of splines and innovation. , 2015, , .                                                                    |     | 1         |
| 144 | Optimal Isotropic Wavelets for Localized Tight Frame Representations. IEEE Signal Processing Letters, 2015, 22, 1918-1921.                                   | 2.1 | 5         |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Fast live cell imaging at nanometer scale using annihilating filter-based low-rank Hankel matrix approach. Proceedings of SPIE, 2015, , .                                      | 0.8 | 4         |
| 146 | Wavelet Statistics of Sparse and Self-Similar Images. SIAM Journal on Imaging Sciences, 2015, 8, 2951-2975.                                                                    | 1.3 | 8         |
| 147 | Ellipse-preserving Hermite interpolation and subdivision. Journal of Mathematical Analysis and Applications, 2015, 426, 211-227.                                               | 0.5 | 40        |
| 148 | Stressed Mycobacteria Use the Chaperone ClpB to Sequester Irreversibly Oxidized Proteins<br>Asymmetrically Within and Between Cells. Cell Host and Microbe, 2015, 17, 178-190. | 5.1 | 104       |
| 149 | Joint image reconstruction and segmentation using the Potts model. Inverse Problems, 2015, 31, 025003.                                                                         | 1.0 | 88        |
| 150 | Divergence-Free Wavelet Frames. IEEE Signal Processing Letters, 2015, 22, 1142-1146.                                                                                           | 2.1 | 6         |
| 151 | Snakes on a Plane: A perfect snap for bioimage analysis. IEEE Signal Processing Magazine, 2015, 32, 41-48.                                                                     | 4.6 | 63        |
| 152 | Quantitative evaluation of software packages for single-molecule localization microscopy. Nature Methods, 2015, 12, 717-724.                                                   | 9.0 | 347       |
| 153 | Optimality of Operator-Like Wavelets for Representing Sparse AR(1) Processes. IEEE Transactions on Signal Processing, 2015, 63, 4827-4837.                                     | 3.2 | 9         |
| 154 | Interior Tomography Using 1D Generalized Total Variation. Part I: Mathematical Foundation. SIAM<br>Journal on Imaging Sciences, 2015, 8, 226-247.                              | 1.3 | 16        |
| 155 | Isotropic inverse-problem approach for two-dimensional phase unwrapping. Journal of the Optical<br>Society of America A: Optics and Image Science, and Vision, 2015, 32, 1092. | 0.8 | 14        |
| 156 | Learning approach to optical tomography. Optica, 2015, 2, 517.                                                                                                                 | 4.8 | 332       |
| 157 | Spline based iterative phase retrieval algorithm for X-ray differential phase contrast radiography.<br>Optics Express, 2015, 23, 10631.                                        | 1.7 | 10        |
| 158 | Interior Tomography Using 1D Generalized Total Variation. Part II: Multiscale Implementation. SIAM<br>Journal on Imaging Sciences, 2015, 8, 2452-2486.                         | 1.3 | 14        |
| 159 | Efficient Shape Priors for Spline-Based Snakes. IEEE Transactions on Image Processing, 2015, 24, 3915-3926.                                                                    | 6.0 | 15        |
| 160 | Trigonometric Interpolation Kernel to Construct Deformable Shapes for User-Interactive Applications. IEEE Signal Processing Letters, 2015, 22, 2097-2101.                      | 2.1 | 65        |
| 161 | Statistical optimality of Hermite splines. , 2015, , .                                                                                                                         |     | 3         |
| 162 | Improved Variational Denoising of Flow Fields with Application to Phase-Contrast MRI Data. IEEE Signal Processing Letters, 2015, 22, 762-766.                                  | 2.1 | 11        |

0.9

5

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                     | IF                       | CITATIONS                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|
| 163 | Optimized Kaiser–Bessel Window Functions for Computed Tomography. IEEE Transactions on Image<br>Processing, 2015, 24, 3826-3833.                                                                                                                                                                                                                                                            | 6.0                      | 23                             |
| 164 | Steerable PCA for Rotation-Invariant Image Recognition. SIAM Journal on Imaging Sciences, 2015, 8, 1857-1873.                                                                                                                                                                                                                                                                               | 1.3                      | 4                              |
| 165 | Wavelet-based identification and classification of local symmetries in microscopy images. , 2014, , .                                                                                                                                                                                                                                                                                       |                          | 1                              |
| 166 | High-performance 3D deconvolution of fluorescence micrographs. , 2014, , .                                                                                                                                                                                                                                                                                                                  |                          | 2                              |
| 167 | Unsupervised texture segmentation using monogenic curvelets and the Potts model. , 2014, , .                                                                                                                                                                                                                                                                                                |                          | 6                              |
| 168 | VOW: Variance-optimal wavelets for the steerable pyramid. , 2014, , .                                                                                                                                                                                                                                                                                                                       |                          | 7                              |
| 169 | Statistics of wavelet coefficients for sparse self-similar images. , 2014, , .                                                                                                                                                                                                                                                                                                              |                          | 1                              |
| 170 | 3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction. Biomedical Optics Express, 2014, 5, 3935.                                                                                                                                                                                                                                 | 1.5                      | 35                             |
| 171 | On the Unique Identification of Continuous-Time Autoregressive Models From Sampled Data. IEEE Transactions on Signal Processing, 2014, 62, 1361-1376.                                                                                                                                                                                                                                       | 3.2                      | 21                             |
| 172 | On the Continuity of Characteristic Functionals and Sparse Stochastic Modeling. Journal of Fourier Analysis and Applications, 2014, 20, 1179-1211.                                                                                                                                                                                                                                          | 0.5                      | 18                             |
| 173 | Digital phase reconstruction via iterative solutions of transport-of-intensity equation. , 2014, , .                                                                                                                                                                                                                                                                                        |                          | 4                              |
| 174 | Approximate Message Passing With Consistent Parameter Estimation and Applications to Sparse Learning. IEEE Transactions on Information Theory, 2014, 60, 2969-2985.                                                                                                                                                                                                                         | 1.5                      | 44                             |
| 175 | A Unified Formulation of Gaussian Versus Sparse Stochastic Processes—Part II: Discrete-Domain<br>Theory. IEEE Transactions on Information Theory, 2014, 60, 3036-3051.                                                                                                                                                                                                                      | 1.5                      | 27                             |
| 176 | Sparsity and Infinite Divisibility. IEEE Transactions on Information Theory, 2014, 60, 2346-2358.                                                                                                                                                                                                                                                                                           | 1.5                      | 18                             |
| 177 | A Unified Formulation of Gaussian Versus Sparse Stochastic Processes—Part I: Continuous-Domain<br>Theory, IEEE Transactions on Information Theory, 2014, 60, 1945-1962.<br>Harmonic singular integrals and steerable wavelets in <mmi:math< td=""><td>1.5</td><td>39</td></mmi:math<>                                                                                                       | 1.5                      | 39                             |
| 178 | xmins:mmi= http://www.w3.org/1998/Math/MathML" altimg="sl1.git"<br>overflow="scroll"> <mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi) (<="" 0="" 10="" 137="" 50="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>l:mn&gt;(m<b>ath</b>varia</td><td>ml:mrow&gt;Int<b>±</b>5double-s</td></mml:mi)></mml:mrow></mml:mrow></mml:mrow></mml:msub> | l:mn>(m <b>ath</b> varia | ml:mrow>Int <b>±</b> 5double-s |
| 179 | Variational Justification of Cycle Spinning for Wavelet-Based Solutions of Inverse Problems. IEEE<br>Signal Processing Letters, 2014, 21, 1326-1330.                                                                                                                                                                                                                                        | 2.1                      | 54                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                |

Approximation Properties of Sobolev Splines and the Construction of Compactly Supported Equivalents. SIAM Journal on Mathematical Analysis, 2014, 46, 1843-1858.

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Atlas-free brain segmentation in 3D proton-density-like MRI images. , 2014, , .                                                                                                       |     | 5         |
| 182 | Exponential Hermite splines for the analysis of biomedical images. , 2014, , .                                                                                                        |     | 22        |
| 183 | Wavelets: on the virtues and applications of the mathematical microscope. Journal of Microscopy, 2014, 255, 123-127.                                                                  | 0.8 | 8         |
| 184 | Adaptive Image Resizing Based on Continuous-Domain Stochastic Modeling. IEEE Transactions on Image<br>Processing, 2014, 23, 413-423.                                                  | 6.0 | 3         |
| 185 | Phase retrieval by using transport-of-intensity equation and differential interference contrast microscopy. , 2014, , .                                                               |     | 13        |
| 186 | FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data.<br>Scientific Reports, 2014, 4, 4577.                                                      | 1.6 | 125       |
| 187 | A 2D/3D image analysis system to track fluorescently labeled structures in rod-shaped cells: application to measure spindle pole asymmetry during mitosis. Cell Division, 2013, 8, 6. | 1.1 | 13        |
| 188 | Decay Properties of Riesz Transforms and Steerable Wavelets. SIAM Journal on Imaging Sciences, 2013,<br>6, 984-998.                                                                   | 1.3 | 10        |
| 189 | Poisson Image Reconstruction With Hessian Schatten-Norm Regularization. IEEE Transactions on Image Processing, 2013, 22, 4314-4327.                                                   | 6.0 | 65        |
| 190 | Spline-based framework for interactive segmentation in biomedical imaging. Irbm, 2013, 34, 235-243.                                                                                   | 3.7 | 18        |
| 191 | Sparse Stochastic Processes and Discretization of Linear Inverse Problems. IEEE Transactions on Image Processing, 2013, 22, 2699-2710.                                                | 6.0 | 78        |
| 192 | Operator-Like Wavelet Bases of \$L_{2}(mathbb{R}^{d})\$. Journal of Fourier Analysis and Applications, 2013, 19, 1294-1322.                                                           | 0.5 | 5         |
| 193 | On the Linearity of Bayesian Interpolators for Non-Gaussian Continuous-Time AR(1) Processes. IEEE Transactions on Information Theory, 2013, 59, 5063-5074.                            | 1.5 | 7         |
| 194 | Benefits of consistency in image denoising with steerable wavelets. , 2013, , .                                                                                                       |     | 3         |
| 195 | Continuous localization using sparsity constraints for high-density super-resolution microscopy. , 2013, , .                                                                          |     | 2         |
| 196 | Spline-Based Deforming Ellipsoids for Interactive 3D Bioimage Segmentation. IEEE Transactions on Image Processing, 2013, 22, 3926-3940.                                               | 6.0 | 29        |
| 197 | A shape-template based two-stage corpus callosum segmentation technique for sagittal plane<br>T1-weighted brain magnetic resonance images. , 2013, , .                                |     | 7         |
| 198 | 3D Poisson microscopy deconvolution with Hessian Schatten-norm regularization. , 2013, , .                                                                                            |     | 2         |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Bayesian Denoising: From MAP to MMSE Using Consistent Cycle Spinning. IEEE Signal Processing Letters, 2013, 20, 249-252.                                                               | 2.1 | 19        |
| 200 | Bayesian Estimation for Continuous-Time Sparse Stochastic Processes. IEEE Transactions on Signal Processing, 2013, 61, 907-920.                                                        | 3.2 | 22        |
| 201 | MMSE Estimation of Sparse Lévy Processes. IEEE Transactions on Signal Processing, 2013, 61, 137-147.                                                                                   | 3.2 | 21        |
| 202 | Fast iterative reconstruction of differential phase contrast X-ray tomograms. Optics Express, 2013, 21, 5511.                                                                          | 1.7 | 36        |
| 203 | Constrained regularized reconstruction of X-ray-DPCI tomograms with weighted-norm. Optics Express, 2013, 21, 32340.                                                                    | 1.7 | 10        |
| 204 | A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15842-15847. | 3.3 | 123       |
| 205 | Spatio-temporal regularization of flow-fields. , 2013, , .                                                                                                                             |     | 5         |
| 206 | Hessian Schatten-Norm Regularization for Linear Inverse Problems. IEEE Transactions on Image<br>Processing, 2013, 22, 1873-1888.                                                       | 6.0 | 138       |
| 207 | A Unifying Parametric Framework for 2D Steerable Wavelet Transforms. SIAM Journal on Imaging Sciences, 2013, 6, 102-135.                                                               | 1.3 | 67        |
| 208 | Iterative FBP for improved reconstruction of X-ray differential phase-contrast tomograms. , 2013, , .                                                                                  |     | 2         |
| 209 | Autocalibrated signal reconstruction from linear measurements using adaptive GAMP. , 2013, , .                                                                                         |     | 6         |
| 210 | Can localization microscopy benefit from approximation theory?. , 2013, , .                                                                                                            |     | 11        |
| 211 | On the optimality of operator-like wavelets for sparse AR(1) processes. , 2013, , .                                                                                                    |     | 5         |
| 212 | Design of steerable filters for the detection of micro-particles. , 2013, , .                                                                                                          |     | 4         |
| 213 | Linear interpolation of biomedical images using a data-adaptive kernel. , 2013, , .                                                                                                    |     | О         |
| 214 | Variational decomposition of vector fields in the presence of noise. , 2013, , .                                                                                                       |     | 0         |
| 215 | Detection of symmetric junctions in biological images using 2-D steerable wavelet transforms. , 2013, ,                                                                                |     | 6         |
| 216 | Convex Generalizations of Total Variation Based on the Structure Tensor with Applications to Inverse<br>Problems. Lecture Notes in Computer Science, 2013, , 48-60.                    | 1.0 | 30        |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Local demodulation of holograms using the Riesz transform with application to microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 2118. | 0.8 | 19        |
| 218 | Fast parametric snakes for 3D microscopy. , 2012, , .                                                                                                                                        |     | 7         |
| 219 | Reconstruction of biomedical images and sparse stochastic modeling. , 2012, , .                                                                                                              |     | 3         |
| 220 | A Box Spline Calculus for the Discretization of Computed Tomography Reconstruction Problems. IEEE<br>Transactions on Medical Imaging, 2012, 31, 1532-1541.                                   | 5.4 | 24        |
| 221 | Is Uniqueness Lost for Under-Sampled Continuous-Time Auto-Regressive Processes?. IEEE Signal<br>Processing Letters, 2012, 19, 183-186.                                                       | 2.1 | 4         |
| 222 | 3D Steerable Wavelets in Practice. IEEE Transactions on Image Processing, 2012, 21, 4522-4533.                                                                                               | 6.0 | 32        |
| 223 | One-Bit Measurements With Adaptive Thresholds. IEEE Signal Processing Letters, 2012, 19, 607-610.                                                                                            | 2.1 | 56        |
| 224 | Wavelet Shrinkage With Consistent Cycle Spinning Generalizes Total Variation Denoising. IEEE Signal<br>Processing Letters, 2012, 19, 187-190.                                                | 2.1 | 38        |
| 225 | Left-inverses of fractional Laplacian and sparse stochastic processes. Advances in Computational Mathematics, 2012, 36, 399-441.                                                             | 0.8 | 16        |
| 226 | Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications. IEEE<br>Transactions on Image Processing, 2012, 21, 983-995.                                           | 6.0 | 188       |
| 227 | Snakes With an Ellipse-Reproducing Property. IEEE Transactions on Image Processing, 2012, 21, 1258-1271.                                                                                     | 6.0 | 51        |
| 228 | Steerable Pyramids and Tight Wavelet Frames in \$L_{2}({BBR}^{d})\$. IEEE Transactions on Image Processing, 2011, 20, 2705-2721.                                                             | 6.0 | 79        |
| 229 | Stochastic Models for Sparse and Piecewise-Smooth Signals. IEEE Transactions on Signal Processing, 2011, 59, 989-1006.                                                                       | 3.2 | 52        |
| 230 | On the Hilbert Transform of Wavelets. IEEE Transactions on Signal Processing, 2011, 59, 1890-1894.                                                                                           | 3.2 | 20        |
| 231 | A Sampling Theory Approach for Continuous ARMA Identification. IEEE Transactions on Signal Processing, 2011, 59, 4620-4634.                                                                  | 3.2 | 22        |
| 232 | On Regularized Reconstruction of Vector Fields. IEEE Transactions on Image Processing, 2011, 20, 3163-3178.                                                                                  | 6.0 | 14        |
| 233 | The Ovuscule. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33, 382-393.                                                                                             | 9.7 | 43        |
| 234 | Activelets: Wavelets for sparse representation of hemodynamic responses. Signal Processing, 2011, 91, 2810-2821.                                                                             | 2.1 | 56        |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Image Denoising in Mixed Poisson–Gaussian Noise. IEEE Transactions on Image Processing, 2011, 20,<br>696-708.                                                                  | 6.0 | 354       |
| 236 | 3D steerable wavelets and monogenic analysis for bioimaging. , 2011, , .                                                                                                       |     | 13        |
| 237 | Fast interscale wavelet denoising of Poisson-corrupted images. Signal Processing, 2010, 90, 415-427.                                                                           | 2.1 | 191       |
| 238 | A software solution for recording circadian oscillator features in time-lapse live cell microscopy.<br>Cell Division, 2010, 5, 17.                                             | 1.1 | 20        |
| 239 | Fast Space-Variant Elliptical Filtering Using Box Splines. IEEE Transactions on Image Processing, 2010, 19, 2290-2306.                                                         | 6.0 | 18        |
| 240 | On the Shiftability of Dual-Tree Complex Wavelet Transforms. IEEE Transactions on Signal Processing, 2010, 58, 221-232.                                                        | 3.2 | 45        |
| 241 | Analytical Footprints: Compact Representation of Elementary Singularities in Wavelet Bases. IEEE<br>Transactions on Signal Processing, 2010, 58, 6105-6118.                    | 3.2 | 7         |
| 242 | Fractional Brownian Vector Fields. Multiscale Modeling and Simulation, 2010, 8, 1645-1670.                                                                                     | 0.6 | 14        |
| 243 | Wavelet Steerability and the Higher-Order Riesz Transform. IEEE Transactions on Image Processing, 2010, 19, 636-652.                                                           | 6.0 | 89        |
| 244 | Phosphorylation Does Not Prompt, Nor Prevent, the Formation of Â-synuclein Toxic Species in a Rat<br>Model of Parkinson's Disease. Human Molecular Genetics, 2009, 18, 872-87. | 1.4 | 172       |
| 245 | Higher-order riesz transforms and steerablewavelet frames. , 2009, , .                                                                                                         |     | 8         |
| 246 | Fast Haar-wavelet denoising of multidimensional fluorescence microscopy data. , 2009, , .                                                                                      |     | 17        |
| 247 | Wavelet primal sketch representation using Marr wavelet pyramid and its reconstruction.<br>Proceedings of SPIE, 2009, , .                                                      | 0.8 | 0         |
| 248 | A Fast Multilevel Algorithm for Wavelet-Regularized Image Restoration. IEEE Transactions on Image<br>Processing, 2009, 18, 509-523.                                            | 6.0 | 65        |
| 249 | Super-resolution orientation estimation and localization of fluorescent dipoles using 3-D steerable filters. Optics Express, 2009, 17, 6829.                                   | 1.7 | 95        |
| 250 | Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms. IEEE<br>Transactions on Signal Processing, 2009, 57, 3411-3425.                            | 3.2 | 56        |
| 251 | Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform. IEEE<br>Transactions on Image Processing, 2009, 18, 2402-2418.                            | 6.0 | 168       |
| 252 | Invariances, Laplacian-Like Wavelet Bases, and the Whitening of Fractal Processes. IEEE Transactions on Image Processing, 2009, 18, 689-702.                                   | 6.0 | 23        |

| #   | Article                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Shift-invariant spaces from rotation-covariant functions. Applied and Computational Harmonic Analysis, 2008, 25, 240-265.                                                                            | 1.1 | 16        |
| 254 | False Discovery Rate for Wavelet-Based Statistical Parametric Mapping. IEEE Journal on Selected Topics<br>in Signal Processing, 2008, 2, 897-906.                                                    | 7.3 | 4         |
| 255 | Dynamic PET Reconstruction Using Wavelet Regularization With Adapted Basis Functions. IEEE<br>Transactions on Medical Imaging, 2008, 27, 943-959.                                                    | 5.4 | 54        |
| 256 | The Pairing of a Wavelet Basis With a Mildly Redundant Analysis via Subband Regression. IEEE<br>Transactions on Image Processing, 2008, 17, 2040-2052.                                               | 6.0 | 23        |
| 257 | Complex Wavelet Bases, Steerability, and the Marr-Like Pyramid. IEEE Transactions on Image Processing, 2008, 17, 2063-2080.                                                                          | 6.0 | 33        |
| 258 | Snakuscules. IEEE Transactions on Image Processing, 2008, 17, 585-593.                                                                                                                               | 6.0 | 38        |
| 259 | A Fast Thresholded Landweber Algorithm for Wavelet-Regularized Multidimensional Deconvolution.<br>IEEE Transactions on Image Processing, 2008, 17, 539-549.                                          | 6.0 | 174       |
| 260 | Monte-Carlo Sure: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms. IEEE Transactions on Image Processing, 2008, 17, 1540-1554.                                | 6.0 | 275       |
| 261 | Model-Based 2.5-D Deconvolution for Extended Depth of Field in Brightfield Microscopy. IEEE Transactions on Image Processing, 2008, 17, 1144-1153.                                                   | 6.0 | 130       |
| 262 | Multiframe sure-let denoising of timelapse fluorescence microscopy images. , 2008, , .                                                                                                               |     | 25        |
| 263 | Halton Sampling for Image Registration Based on Mutual Information. Sampling Theory in Signal and Information Processing, 2008, 7, 141-171.                                                          | 0.2 | 34        |
| 264 | Wavelet-based multi-resolution statistics for optical imaging signals: Application to automated detection of odour activated glomeruli in the mouse olfactory bulb. NeuroImage, 2007, 34, 1020-1035. | 2.1 | 31        |
| 265 | WSPM: Wavelet-based statistical parametric mapping. NeuroImage, 2007, 37, 1205-1217.                                                                                                                 | 2.1 | 37        |
| 266 | Generalized Daubechies Wavelet Families. IEEE Transactions on Signal Processing, 2007, 55, 4415-4429.                                                                                                | 3.2 | 159       |
| 267 | Self-Similarity: Part l—Splines and Operators. IEEE Transactions on Signal Processing, 2007, 55, 1352-1363.                                                                                          | 3.2 | 42        |
| 268 | Self-Similarity: Part II—Optimal Estimation of Fractal Processes. IEEE Transactions on Signal<br>Processing, 2007, 55, 1364-1378.                                                                    | 3.2 | 37        |
| 269 | A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding. IEEE<br>Transactions on Image Processing, 2007, 16, 593-606.                                                    | 6.0 | 507       |
| 270 | 3-D shape estimation of DNA molecules from stereo cryo-electron micro-graphs using a projection-steerable snake. IEEE Transactions on Image Processing, 2006, 15, 214-227.                           | 6.0 | 14        |

| #   | Article                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Polyharmonic smoothing splines and the multidimensional Wiener filtering of fractal-like signals.<br>IEEE Transactions on Image Processing, 2006, 15, 2616-2630.      | 6.0 | 10        |
| 272 | Complex B-splines. Applied and Computational Harmonic Analysis, 2006, 20, 261-282.                                                                                    | 1.1 | 31        |
| 273 | Surfing the brain. IEEE Engineering in Medicine and Biology Magazine, 2006, 25, 65-78.                                                                                | 1.1 | 30        |
| 274 | Elastic Registration of Biological Images Using Vector-Spline Regularization. IEEE Transactions on<br>Biomedical Engineering, 2005, 52, 652-663.                      | 2.5 | 263       |
| 275 | Isotropic polyharmonic B-splines: scaling functions and wavelets. IEEE Transactions on Image<br>Processing, 2005, 14, 1798-1813.                                      | 6.0 | 95        |
| 276 | Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Transactions on Image Processing, 2005, 14, 1372-1383. | 6.0 | 391       |
| 277 | A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles.<br>Optics Express, 2005, 13, 10503.                                | 1.7 | 81        |
| 278 | Design of steerable filters for feature detection using canny-like criteria. IEEE Transactions on<br>Pattern Analysis and Machine Intelligence, 2004, 26, 1007-1019.  | 9.7 | 338       |
| 279 | Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microscopy Research and Technique, 2004, 65, 33-42.      | 1.2 | 332       |
| 280 | Efficient Energies and Algorithms for Parametric Snakes. IEEE Transactions on Image Processing, 2004, 13, 1231-1244.                                                  | 6.0 | 164       |
| 281 | Hex-Splines: A Novel Spline Family for Hexagonal Lattices. IEEE Transactions on Image Processing, 2004, 13, 758-772.                                                  | 6.0 | 69        |
| 282 | Integrated wavelet processing and spatial statistical testing of fMRI data. NeuroImage, 2004, 23, 1472-1485.                                                          | 2.1 | 67        |
| 283 | Mathematical properties of the jpeg2000 wavelet filters. IEEE Transactions on Image Processing, 2003, 12, 1080-1090.                                                  | 6.0 | 132       |
| 284 | Fresnelets: new multiresolution wavelet bases for digital holography. IEEE Transactions on Image<br>Processing, 2003, 12, 29-43.                                      | 6.0 | 146       |
| 285 | Discretization of the radon transform and of its inverse by spline convolutions. IEEE Transactions on Medical Imaging, 2002, 21, 363-376.                             | 5.4 | 45        |
| 286 | Fractional Splines and Wavelets. SIAM Review, 2000, 42, 43-67.                                                                                                        | 4.2 | 322       |
| 287 | Approximation Error for Quasi-Interpolators and (Multi-)Wavelet Expansions. Applied and Computational Harmonic Analysis, 1999, 6, 219-251.                            | 1.1 | 90        |
| 288 | Quasi-Orthogonality and Quasi-Projections. Applied and Computational Harmonic Analysis, 1996, 3, 201-214.                                                             | 1.1 | 13        |

| #   | Article                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Sampling procedures in function spaces and asymptotic equivalence with shannon's sampling theory.<br>Numerical Functional Analysis and Optimization, 1994, 15, 1-21. | 0.6 | 199       |
| 290 | Families of multiresolution and wavelet spaces with optimal properties. Numerical Functional Analysis and Optimization, 1993, 14, 417-446.                           | 0.6 | 111       |
| 291 | An improved least squares Laplacian pyramid for image compression. Signal Processing, 1992, 27, 187-203.                                                             | 2.1 | 36        |
| 292 | Computerized methods for analyzing two-dimensional agarose gel electropherograms.<br>Electrophoresis, 1991, 12, 39-46.                                               | 1.3 | 10        |
| 293 | Computerized cataract detection and classification. Current Eye Research, 1990, 9, 517-524.                                                                          | 0.7 | 16        |
| 294 | Normalization procedures and factorial representations for classification of correlation-aligned images: A comparative study. Ultramicroscopy, 1989, 30, 299-310.    | 0.8 | 21        |
| 295 | A new resolution criterion based on spectral signal-to-noise ratios. Ultramicroscopy, 1987, 23, 39-51.                                                               | 0.8 | 238       |
| 296 | On the approximation of the discrete Karhunen-Loeve transform for stationary processes. Signal Processing, 1984, 7, 231-249.                                         | 2.1 | 49        |
| 297 | Sparse stochastic processes. , 0, , 150-190.                                                                                                                         |     | 2         |
| 298 | Jump-penalized least absolute values estimation of scalar or circle-valued signals. Information and Inference, 0, , iaw022.                                          | 0.9 | 1         |