
Li-Dong Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7778032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Realizing ranged performance in SnTe through integrating bands convergence and DOS distortion. Journal of Materiomics, 2022, 8, 184-194.	2.8	17
2	Honeycomb-like puckered PbSe with wide bandgap as promising thermoelectric material: a first-principles prediction. Materials Today Energy, 2022, 23, 100914.	2.5	11
3	Realizing synergistic optimization of thermoelectric properties in n-type BiSbSe3 polycrystals via co-doping zirconium and halogen. Materials Today Physics, 2022, 22, 100608.	2.9	7
4	Anomalous transverse optical phonons in SnTe and PbTe. Physical Review B, 2022, 105, .	1.1	7
5	Outstanding CdSe with Multiple Functions Leads to High Performance of GeTe Thermoelectrics. Advanced Energy Materials, 2022, 12, .	10.2	21
6	Ultrahigh carrier mobility contributes to remarkably enhanced thermoelectric performance in n-type PbSe. Energy and Environmental Science, 2022, 15, 346-355.	15.6	45
7	Enhanced thermoelectric perfromance in cubic form of SnSe stabilized through enformatingly alloying AgSbTe2. Acta Materialia, 2022, 227, 117681.	3.8	16
8	Synergistically enhanced electrical transport properties of SrTiO ₃ <i>via</i> Fermi level regulation and modulation doping. Journal of Materials Chemistry C, 2022, 10, 13851-13859.	2.7	1
9	Remarkable electron and phonon transports in low-cost SnS: A new promising thermoelectric material. Science China Materials, 2022, 65, 1143-1155.	3.5	9
10	Investigations on the Thermoelectric Transport Properties in the Holeâ€doped La ₂ CuO ₄ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	2
11	Synergistically optimizing carrier and phonon transport properties in n-type PbTe through I doping and SnSe alloying. Materials Today Energy, 2022, 26, 100983.	2.5	5
12	Highâ€Ranged <i>ZT</i> Value Promotes Thermoelectric Cooling and Power Generation in nâ€Type PbTe. Advanced Energy Materials, 2022, 12, .	10.2	36
13	A promising thermoelectrics In4SnSe4 with a wide bandgap and cubic structure composited by layered SnSe and In4Se3. Journal of Materiomics, 2022, 8, 982-991.	2.8	5
14	High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science, 2022, 375, 1385-1389.	6.0	194
15	One–One Correspondence between n-Type SnTe Thermoelectric and Topological Phase Transition. Chemistry of Materials, 2022, 34, 3423-3429.	3.2	11
16	Distinct electron and hole transports in SnSe crystals. Science Bulletin, 2022, 67, 1105-1107.	4.3	16
17	Synergistically enhanced thermoelectric properties in n-type Bi6Cu2Se4O6 through inducing resonant levels. Acta Materialia, 2022, 232, 117930.	3.8	13
18	Enhanced thermoelectric performance in SnTe due to the energy filtering effect introduced by Bi2O3. Materials Today Energy, 2022, 25, 100985.	2.5	13

#	Article	IF	CITATIONS
19	Unidentified major p-type source in SnSe: Multivacancies. NPG Asia Materials, 2022, 14, .	3.8	8
20	Boosting thermoelectric performance of n-type PbS through synergistically integrating In resonant level and Cu dynamic doping. Journal of Physics and Chemistry of Solids, 2021, 148, 109640.	1.9	26
21	Enhanced thermoelectric performance in Cl-doped BiSbSe3 with optimal carrier concentration and effective mass. Journal of Materials Science and Technology, 2021, 70, 67-72.	5.6	17
22	Preparing bulk Cu-Ni-Mn based thermoelectric alloys and synergistically improving their thermoelectric and mechanical properties using nanotwins and nanoprecipitates. Materials Today Physics, 2021, 17, 100332.	2.9	17
23	Boosting the thermoelectric performance of GeTe by manipulating the phase transition temperature <i>via</i> Sb doping. Journal of Materials Chemistry C, 2021, 9, 6484-6490.	2.7	19
24	Hierarchical structures lead to high thermoelectric performance in Cu _{m+n} Pb ₁₀₀ Sb _m 100100Se _{2m} (CLAST). Energy and Environmental Science, 2021, 14, 451-461.	15.6	47
25	Realizing high thermoelectric properties in p-type polycrystalline SnSe by inducing DOS distortion. Rare Metals, 2021, 40, 2819-2828.	3.6	33
26	Contrasting Thermoelectric Transport Properties of n-Type PbS Induced by Adding Ni and Zn. ACS Applied Energy Materials, 2021, 4, 6284-6289.	2.5	5
27	Nanoscale bubble domains with polar topologies in bulk ferroelectrics. Nature Communications, 2021, 12, 3632.	5.8	57
28	Contrasting Cu Roles Lead to High Ranged Thermoelectric Performance of PbS. Advanced Functional Materials, 2021, 31, 2102185.	7.8	33
29	Low carrier concentration leads to high in-plane thermoelectric performance in n-type SnS crystals. Science China Materials, 2021, 64, 3051-3058.	3.5	16
30	Dynamic carrier transports and low thermal conductivity in <i>n</i> â€ŧype layered InSe thermoelectrics. Aggregate, 2021, 2, e92.	5.2	14
31	Realizing N-type SnTe Thermoelectrics with Competitive Performance through Suppressing Sn Vacancies. Journal of the American Chemical Society, 2021, 143, 8538-8542.	6.6	51
32	Slowing down the heat in thermoelectrics. InformaÄnÃ-Materiály, 2021, 3, 755-789.	8.5	57
33	Thermal diffusivity and its lower bound in orthorhombic SnSe. Physical Review B, 2021, 104, .	1.1	4
34	An Update Review on N-Type Layered Oxyselenide Thermoelectric Materials. Materials, 2021, 14, 3905.	1.3	12
35	Physical insights on the low lattice thermal conductivity of AgInSe2. Materials Today Physics, 2021, 19, 100428.	2.9	20
36	Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science, 2021, 373, 556-561.	6.0	270

#	Article	IF	CITATIONS
37	Understanding the electrical transports of <i>p</i> -type polycrystalline SnSe with effective medium theory. Applied Physics Letters, 2021, 119, .	1.5	8
38	Realizing high doping efficiency and thermoelectric performance in n-type SnSe polycrystals via bandgap engineering and vacancy compensation. Materials Today Physics, 2021, 20, 100452.	2.9	16
39	Band structure and microstructure modulations enable high quality factor to elevate thermoelectric performance in Ge0.9Sb0.1Te-x%FeTe2. Materials Today Physics, 2021, 20, 100444.	2.9	16
40	Anisotropic thermoelectric transport properties in polycrystalline SnSe ₂ *. Chinese Physics B, 2021, 30, 067101.	0.7	5
41	Enhancing thermoelectric performance of n-type Bi6Cu2Se4O6 through introducing transition metal elements. Scripta Materialia, 2021, 202, 114010.	2.6	10
42	Thermo-phototronic effect in p-type Na-doped SnS single crystals for enhanced self-powered photodetectors. Nano Energy, 2021, 88, 106268.	8.2	18
43	Band convergence and nanostructure modulations lead to high thermoelectric performance in SnPb0.04Te-y% AgSbTe2. Materials Today Physics, 2021, 21, 100505.	2.9	17
44	Bridging the miscibility gap towards higher thermoelectric performance of PbS. Acta Materialia, 2021, 220, 117337.	3.8	17
45	Rationally optimized carrier effective mass and carrier density leads to high average <i>ZT</i> value in n-type PbSe. Journal of Materials Chemistry A, 2021, 9, 23011-23018.	5.2	15
46	Realizing high thermoelectric performance in SnSe ₂ <i>via</i> intercalating Cu. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 208401.	0.2	3
47	Evaluation on the Thermoelectric Cooling Ability of PbTe. ACS Applied Energy Materials, 2021, 4, 11813-11818.	2.5	5
48	Synergistically optimizing charge and phonon transport properties in n-type PbTe via introducing ternary compound AgSb(Se, Te)2. Journal of Alloys and Compounds, 2020, 815, 152463.	2.8	15
49	Electrical and Thermal Transport Properties of n â€ŧype Bi 6 Cu 2 Se 4 O 6 (2BiCuSeO + 2Bi 2 O 2 Se). Annalen Der Physik, 2020, 532, 1900340.	0.9	11
50	Realizing High Thermoelectric Performance in Polycrystalline SnSe via Silver Doping and Germanium Alloying. ACS Applied Energy Materials, 2020, 3, 2049-2054.	2.5	52
51	An approach of enhancing thermoelectric performance for p-type PbS: Decreasing electronic thermal conductivity. Journal of Alloys and Compounds, 2020, 820, 153453.	2.8	22
52	High thermoelectric figure of merit ZT > 1 in SnS polycrystals. Journal of Materiomics, 2020, 6, 77-85.	2.8	46
53	Band inversion induced multiple electronic valleys for high thermoelectric performance of SnTe with strong lattice softening. Nano Energy, 2020, 69, 104395.	8.2	80
54	Synergistically Enhancing Thermoelectric Performance of nâ€Type PbTe with Indium Doping and Sulfur Alloying. Annalen Der Physik, 2020, 532, 1900421.	0.9	19

#	Article	IF	CITATIONS
55	High-Quality SnSe ₂ Single Crystals: Electronic and Thermoelectric Properties. ACS Applied Energy Materials, 2020, 3, 10787-10792.	2.5	34
56	Predicting the Potential Performance in P-Type SnS Crystals via Utilizing the Weighted Mobility and Quality Factor. Chinese Physics Letters, 2020, 37, 087104.	1.3	19
57	Symmetry and asymmetry in thermoelectrics. Journal of Materials Chemistry C, 2020, 8, 12054-12061.	2.7	14
58	Singleâ€Crystal SnSe Thermoelectric Fibers via Laserâ€Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics. Advanced Materials, 2020, 32, e2002702.	11.1	57
59	Phonon and Carrier Transport Properties in Low-Cost and Environmentally Friendly SnS ₂ : A Promising Thermoelectric Material. Chemistry of Materials, 2020, 32, 10348-10356.	3.2	32
60	Investigation on carrier mobility when comparing nanostructures and bands manipulation. Nanoscale, 2020, 12, 12741-12747.	2.8	13
61	Influence of direct electric current on wetting behavior during brazing. Frontiers of Mechanical Engineering, 2020, 15, 496-503.	2.5	1
62	Thermoelectric transport properties of PbS and its contrasting electronic band structures. Scripta Materialia, 2020, 185, 76-81.	2.6	7
63	Key influencing factors for the thermal shock resistance of La2Zr2O7-based multilayer TBCs. Surface and Coatings Technology, 2020, 396, 125951.	2.2	18
64	Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure. Science China Materials, 2020, 63, 1759-1768.	3.5	38
65	Estimation of the potential performance in p-type SnSe crystals through evaluating weighted mobility and effective mass. Journal of Materiomics, 2020, 6, 671-676.	2.8	38
66	Sb2Si2Te6: A Robust New Thermoelectric Material. Trends in Chemistry, 2020, 2, 89-91.	4.4	15
67	Synergistically improving thermoelectric and mechanical properties of Ge0.94Bi0.06Te through dispersing nano-SiC. Scripta Materialia, 2020, 183, 22-27.	2.6	29
68	A telomerase-responsive nanoprobe with theranostic properties in tumor cells. Talanta, 2020, 215, 120898.	2.9	8
69	Molecular Construction from AgGaS ₂ to CuZnPS ₄ : Defect-Induced Second Harmonic Generation Enhancement and Cosubstitution-Driven Band Gap Enlargement. Chemistry of Materials, 2020, 32, 3288-3296.	3.2	63
70	Ultrahigh Average <i>ZT</i> Realized in p-Type SnSe Crystalline Thermoelectrics through Producing Extrinsic Vacancies. Journal of the American Chemical Society, 2020, 142, 5901-5909.	6.6	94
71	Contrasting roles of small metallic elements M (M = Cu, Zn, Ni) in enhancing the thermoelectric performance of n-type PbM _{0.01} Se. Journal of Materials Chemistry A, 2020, 8, 5699-5708.	5.2	32
72	Enhancing thermoelectric performance of BiSbSe3 through improving carrier mobility via percolating carrier transports. Journal of Alloys and Compounds, 2020, 836, 155473.	2.8	13

#	Article	IF	CITATIONS
73	Improving the thermoelectric performance of p-type PbSe <i>via</i> synergistically enhancing the Seebeck coefficient and reducing electronic thermal conductivity. Journal of Materials Chemistry A, 2020, 8, 4931-4937.	5.2	34
74	Enhancing thermoelectric performance of n-type PbTe through separately optimizing phonon and charge transport properties. Journal of Alloys and Compounds, 2020, 828, 154377.	2.8	13
75	Carrier mobility does matter for enhancing thermoelectric performance. APL Materials, 2020, 8, 010901.	2.2	48
76	Band Sharpening and Band Alignment Enable High Quality Factor to Enhance Thermoelectric Performance in <i>n</i> -Type PbS. Journal of the American Chemical Society, 2020, 142, 4051-4060.	6.6	130
77	Large effective mass and low lattice thermal conductivity contributing to high thermoelectric performance of Zn-doped Cu5Sn2Se7. Journal of Alloys and Compounds, 2020, 826, 154154.	2.8	11
78	High-quality textured SnSe thin films for self-powered, rapid-response photothermoelectric application. Nano Energy, 2020, 72, 104742.	8.2	58
79	Temperature-driven n–p conduction type switching without structural transition in a Cu-rich chalcogenide, NaCu ₅ S ₃ . Chemical Communications, 2020, 56, 4882-4885.	2.2	5
80	Seeking new, highly effective thermoelectrics. Science, 2020, 367, 1196-1197.	6.0	313
81	Thermoelectric Materials. Annalen Der Physik, 2020, 532, 2000435.	0.9	3
82	Contrasting Thermoelectric Transport Behaviors of <i>p</i> -Type PbS Caused by Doping Alkali Metals (Li and Na). Research, 2020, 2020, 4084532.	2.8	2
83	Oxygen adsorption and its influence on the thermoelectric performance of polycrystalline SnSe. Journal of Materials Chemistry C, 2019, 7, 10507-10513.	2.7	28
84	Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through introducing a small amount of Zn. Materials Today Physics, 2019, 9, 100102.	2.9	38
85	Enhancing Thermoelectric Performance of p-Type PbSe through Suppressing Electronic Thermal Transports. ACS Applied Energy Materials, 2019, 2, 8236-8243.	2.5	30
86	Enhancing thermoelectric transport properties of n-type PbS through introducing CaS/SrS. Journal of Solid State Chemistry, 2019, 280, 120995.	1.4	15
87	Comprehensive Investigation on the Thermoelectric Properties of pâ€Type PbTeâ€PbSeâ€PbS Alloys. Advanced Electronic Materials, 2019, 5, 1900609.	2.6	29
88	Pressure-induced enhancement of thermoelectric power factor in pristine and hole-doped SnSe crystals. RSC Advances, 2019, 9, 26831-26837.	1.7	7
89	Layered oxygen-containing thermoelectric materials: Mechanisms, strategies, and beyond. Materials Today, 2019, 29, 68-85.	8.3	66
90	Realizing High Thermoelectric Performance in GeTe through Optimizing Ge Vacancies and Manipulating Ge Precipitates. ACS Applied Energy Materials, 2019, 2, 7594-7601.	2.5	61

#	Article	IF	CITATIONS
91	Thermo-photoelectric coupled effect induced electricity in N-type SnSe:Br single crystals for enhanced self-powered photodetectors. Nano Energy, 2019, 66, 104111.	8.2	42
92	High thermoelectric performance in low-cost SnS _{0.91} Se _{0.09} crystals. Science, 2019, 365, 1418-1424.	6.0	395
93	Thermoelectric transport properties of n-type tin sulfide. Scripta Materialia, 2019, 170, 99-105.	2.6	29
94	Realizing Highâ€Ranged Outâ€ofâ€Plane ZTs in Nâ€Type SnSe Crystals through Promoting Continuous Phase Transition. Advanced Energy Materials, 2019, 9, 1901334.	10.2	83
95	Significant Optimization of Electron–Phonon Transport of n-Type Bi ₂ O ₂ Se by Mechanical Manipulation of Se Vacancies via Shear Exfoliation. ACS Applied Materials & Interfaces, 2019, 11, 21603-21609.	4.0	48
96	Seeing atomic-scale structural origins and foreseeing new pathways to improved thermoelectric materials. Materials Horizons, 2019, 6, 1548-1570.	6.4	27
97	Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. Energy and Environmental Science, 2019, 12, 1969-1978.	15.6	99
98	Realizing n-type BiCuSeO through halogens doping. Ceramics International, 2019, 45, 14953-14957.	2.3	11
99	Dynamic Ag ⁺ -intercalation with AgSnSe ₂ nano-precipitates in Cl-doped polycrystalline SnSe ₂ toward ultra-high thermoelectric performance. Journal of Materials Chemistry A, 2019, 7, 9761-9772.	5.2	50
100	Realizing high thermoelectric performance of polycrystalline SnS through optimizing carrier concentration and modifying band structure. Journal of Alloys and Compounds, 2019, 789, 485-492.	2.8	34
101	Amphoteric Indium Enables Carrier Engineering to Enhance the Power Factor and Thermoelectric Performance in <i>n</i> â€₹ype Ag <i>_n</i> Pb ₁₀₀ In <i>_n</i> Te ₁₀₀₊₂ <i>_n</i> (UST). Advanced Energy Materials, 2019, 9, 1900414.	10.2	60
102	Effects of temperature and pressure on the optical and vibrational properties of thermoelectric SnSe. Physical Chemistry Chemical Physics, 2019, 21, 8663-8678.	1.3	20
103	A highly porous thermal barrier coating based on Gd2O3–Yb2O3 co-doped YSZ. Surface and Coatings Technology, 2019, 366, 349-354.	2.2	22
104	Synergistically optimized electrical and thermal transport properties of polycrystalline SnSe via alloying SnS. Journal of Solid State Chemistry, 2019, 273, 85-91.	1.4	23
105	Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature <i>via</i> entropy engineering. Journal of Materials Chemistry A, 2019, 7, 26393-26401.	5.2	103
106	Probing exosome internalization pathways through confocal microscopy imaging. Chemical Communications, 2019, 55, 14015-14018.	2.2	16
107	Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoelectric material. Frontiers of Physics, 2019, 14, 1.	2.4	24
108	Enhancing thermoelectric performance of SnTe via stepwisely optimizing electrical and thermal transport properties. Journal of Alloys and Compounds, 2019, 773, 571-584.	2.8	37

#	Article	IF	CITATIONS
109	Thermoelectric Material SnPb2Bi2S6: The 4,4L Member of Lillianite Homologous Series with Low Lattice Thermal Conductivity. Inorganic Chemistry, 2019, 58, 1339-1348.	1.9	10
110	Intrinsically Low Thermal Conductivity in BiSbSe ₃ : A Promising Thermoelectric Material with Multiple Conduction Bands. Advanced Functional Materials, 2019, 29, 1806558.	7.8	86
111	Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures. Surface and Coatings Technology, 2019, 358, 215-222.	2.2	86
112	Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification. Journal of the American Chemical Society, 2019, 141, 1141-1149.	6.6	137
113	Investigations on distinct thermoelectric transport behaviors of Cu in n-type PbS. Journal of Alloys and Compounds, 2019, 781, 820-830.	2.8	32
114	Highly Textured N-Type SnSe Polycrystals with Enhanced Thermoelectric Performance. Research, 2019, 2019, 9253132.	2.8	39
115	High performance of n-type (PbS)1-x-y(PbSe)x(PbTe)y thermoelectric materials. Journal of Alloys and Compounds, 2018, 744, 769-777.	2.8	29
116	Thermoelectric transport properties of Pb–Sn–Te–Se system. Rare Metals, 2018, 37, 343-350.	3.6	55
117	Remarkable electron and phonon band structures lead to a high thermoelectric performance <i>ZT</i> > 1 in earth-abundant and eco-friendly SnS crystals. Journal of Materials Chemistry A, 2018, 6, 10048-10056.	5.2	90
118	Thermoelectric transport properties of rock-salt SnSe: first-principles investigation. Journal of Materials Chemistry C, 2018, 6, 12016-12022.	2.7	43
119	High-performance SnSe thermoelectric materials: Progress and future challenge. Progress in Materials Science, 2018, 97, 283-346.	16.0	419
120	Anharmoncity and low thermal conductivity in thermoelectrics. Materials Today Physics, 2018, 4, 50-57.	2.9	242
121	Unusually large chemical potential shift in a degenerate semiconductor: Angle-resolved photoemission study of SnSe and Na-doped SnSe. Physical Review B, 2018, 97, .	1.1	13
122	Measuring nano-scale thermal conductivity. National Science Review, 2018, 5, 2-2.	4.6	3
123	Homologous layered InFeO3(ZnO) m : new promising abradable seal coating materials. Rare Metals, 2018, 37, 79-94.	3.6	28
124	Attempting to realize n-type BiCuSeO. Journal of Solid State Chemistry, 2018, 258, 510-516.	1.4	28
125	Highly-anisotropic optical and electrical properties in layered SnSe. Nano Research, 2018, 11, 554-564.	5.8	114
126	Large enhancement of electrical transport properties of SnS in the out-of-plane direction by n-type doping: a combined ARPES and DFT study. Journal of Materials Chemistry A, 2018, 6, 24588-24594.	5.2	22

#	Article	IF	CITATIONS
127	Effect of Heat Treatment on the Phase Composition, Microstructure and Mechanical Properties of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 High-Entropy Alloys. Metals, 2018, 8, 974.	1.0	12
128	Investigations on electrical and thermal transport properties of Cu2SnSe3 with unusual coexisting nanophases. Materials Today Physics, 2018, 7, 77-88.	2.9	25
129	The Atomic Circus: Small Electron Beams Spotlight Advanced Materials Down to the Atomic Scale. Advanced Materials, 2018, 30, e1802402.	11.1	27
130	The Thermoelectric Properties of SnSe Continue to Surprise: Extraordinary Electron and Phonon Transport. Chemistry of Materials, 2018, 30, 7355-7367.	3.2	79
131	Charge and phonon transport in PbTe-based thermoelectric materials. Npj Quantum Materials, 2018, 3, .	1.8	227
132	Approaching Topological Insulating States Leads to High Thermoelectric Performance in n-Type PbTe. Journal of the American Chemical Society, 2018, 140, 13097-13102.	6.6	77
133	3D charge and 2D phonon transports leading to high out-of-plane <i>ZT</i> in n-type SnSe crystals. Science, 2018, 360, 778-783.	6.0	859
134	Synergistically optimizing electrical and thermal transport properties of n -type PbSe. Progress in Natural Science: Materials International, 2018, 28, 275-280.	1.8	5
135	Excellent <i>ZT</i> achieved in Cu _{1.8} S thermoelectric alloys through introducing rare-earth trichlorides. Journal of Materials Chemistry A, 2018, 6, 14440-14448.	5.2	39
136	Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. Nano Energy, 2018, 52, 246-255.	8.2	188
137	A mimetic transpiration system for record high conversion efficiency in solar steam generator under one-sun. Materials Today Energy, 2018, 8, 166-173.	2.5	145
138	Investigations into the Surface Strain/Stress State in a Single-Crystal Superalloy via XRD Characterization. Metals, 2018, 8, 376.	1.0	3
139	High temperature oxidation behavior of Al0.6CrFeCoNi and Al0.6CrFeCoNiSi0.3 high entropy alloys. Journal of Alloys and Compounds, 2018, 764, 845-852.	2.8	87
140	Realization of n-type and enhanced thermoelectric performance of p-type BiCuSeO by controlled iron incorporation. Journal of Materials Chemistry A, 2018, 6, 13340-13349.	5.2	44
141	Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy and Environmental Science, 2018, 11, 2486-2495.	15.6	200
142	Influence of defects on the thermoelectricity in SnSe: A comprehensive theoretical study. Physical Review B, 2018, 97, .	1.1	53
143	Effect of long-term heat-treatment at 1150 °C on the microstructure and properties of thermal barrier coatings based on ZrO 2 –4 mol.% Y 2 O 3 –1 mol.% Gd 2 O 3 –1 mol.% Yb 2 O 3. Surface and Coatings Technology, 2017, 318, 142-146.	2.2	11
144	Understanding Phonon Scattering by Nanoprecipitates in Potassium-Doped Lead Chalcogenides. ACS Applied Materials & Interfaces, 2017, 9, 3686-3693.	4.0	6

#	Article	IF	CITATIONS
145	Thermoelectric transport properties of polycrystalline SnSe alloyed with PbSe. Applied Physics Letters, 2017, 110, .	1.5	52
146	Enhancing thermoelectric performance of n-type PbSe via additional meso-scale phonon scattering. Inorganic Chemistry Frontiers, 2017, 4, 719-726.	3.0	31
147	Thermoelectric transport properties of BaBiTe3-based materials. Journal of Solid State Chemistry, 2017, 249, 131-135.	1.4	3
148	Improvements of thermoelectric properties for p-type Cu _{1.8} S bulk materials via optimizing the mechanical alloying process. Inorganic Chemistry Frontiers, 2017, 4, 1192-1199.	3.0	26
149	Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of Nâ€Type PbTe to High Performance. Advanced Energy Materials, 2017, 7, 1700099.	10.2	118
150	Boosting the Thermoelectric Performance of (Na,K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering. Journal of the American Chemical Society, 2017, 139, 9714-9720.	6.6	168
151	Analysis of Nanoprecipitates in a Na-Doped PbTe–SrTe Thermoelectric Material with a High Figure of Merit. ACS Applied Materials & Interfaces, 2017, 9, 21791-21797.	4.0	51
152	Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano Energy, 2017, 35, 387-395.	8.2	153
153	Effective dopants in p-type elementary Te thermoelectrics. RSC Advances, 2017, 7, 17682-17688.	1.7	24
154	Direct observation of vast off-stoichiometric defects in single crystalline SnSe. Nano Energy, 2017, 35, 321-330.	8.2	101
155	Enhancing thermoelectric performance of SnTe via nanostructuring particle size. Journal of Alloys and Compounds, 2017, 709, 575-580.	2.8	44
156	Effects of Sb Substitution by Sn on the Thermoelectric Properties of ZrCoSb. Journal of Electronic Materials, 2017, 46, 3076-3082.	1.0	19
157	Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues. Energy and Environmental Science, 2017, 10, 2420-2431.	15.6	116
158	Unexpected Large Hole Effective Masses in SnSe Revealed by Angle-Resolved Photoemission Spectroscopy. Physical Review Letters, 2017, 119, 116401.	2.9	47
159	Promising Thermoelectric Bulk Materials with 2D Structures. Advanced Materials, 2017, 29, 1702676.	11.1	228
160	Investigation on thermal transport and structural properties of InFeO 3 (ZnO) m with modulated layer structures. Acta Materialia, 2017, 136, 235-241.	3.8	18
161	Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu ₂ Te. Journal of the American Chemical Society, 2017, 139, 18732-18738.	6.6	230
162	Enhanced Electrical and Optoelectronic Characteristics of Few-Layer Type-II SnSe/MoS ₂ van der Waals Heterojunctions. ACS Applied Materials & Interfaces, 2017, 9, 42149-42155.	4.0	54

#	Article	IF	CITATIONS
163	Synergistically optimizing thermoelectric transport properties of n-type PbTe via Se and Sn co-alloying. Journal of Alloys and Compounds, 2017, 724, 208-221.	2.8	59
164	Mercouri G. Kanatzidis: Excellence and Innovations in Inorganic and Solid-State Chemistry. Inorganic Chemistry, 2017, 56, 7582-7597.	1.9	7
165	Emulating Bilingual Synaptic Response Using a Junction-Based Artificial Synaptic Device. ACS Nano, 2017, 11, 7156-7163.	7.3	106
166	Influence of long time post annealing on thermal stability and thermophysical properties of plasma sprayed La2Zr2O7 coatings. Journal of Alloys and Compounds, 2017, 695, 2549-2555.	2.8	21
167	Integrating Band Structure Engineering with Allâ€Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System. Advanced Energy Materials, 2017, 7, 1601450.	10.2	157
168	BiCuSeO Thermoelectrics: An Update on Recent Progress and Perspective. Materials, 2017, 10, 198.	1.3	70
169	Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy, 2016, 27, 167-174.	8.2	40
170	The Role of Ionized Impurity Scattering on the Thermoelectric Performances of Rock Salt AgPb <i>_m</i> SnSe ₂₊ <i>_m</i> . Advanced Functional Materials, 2016, 26, 5149-5157.	7.8	62
171	Pressure induced thermoelectric enhancement in SnSe crystals. Journal of Materials Chemistry A, 2016, 4, 12073-12079.	5.2	81
172	Multiple Converged Conduction Bands in K ₂ Bi ₈ Se ₁₃ : A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. Journal of the American Chemical Society, 2016, 138, 16364-16371.	6.6	130
173	Electrical and thermal transport properties of layered Bi2YO4Cu2Se2. Journal of Solid State Chemistry, 2016, 239, 178-183.	1.4	11
174	An overview of advanced thermoelectric materials. Journal of Materiomics, 2016, 2, 101-103.	2.8	26
175	Thermal and mechanical properties of Yb&Mg co-doped InFeZnO4. Journal of Alloys and Compounds, 2016, 684, 34-39.	2.8	6
176	SnSe: a remarkable new thermoelectric material. Energy and Environmental Science, 2016, 9, 3044-3060.	15.6	418
177	Raising thermoelectric performance of n-type SnSe via Br doping and Pb alloying. RSC Advances, 2016, 6, 98216-98220.	1.7	107
178	Realizing High Figure of Merit in Phase-Separated Polycrystalline Sn _{1–<i>x</i>} Pb _{<i>x</i>} Se. Journal of the American Chemical Society, 2016, 138, 13647-13654.	6.6	201
179	Lead-free tin chalcogenide thermoelectric materials. Inorganic Chemistry Frontiers, 2016, 3, 1449-1463.	3.0	42
180	Rationally Designing High-Performance Bulk Thermoelectric Materials. Chemical Reviews, 2016, 116, 12123-12149.	23.0	1,624

#	Article	IF	CITATIONS
181	Origin of low thermal conductivity in SnSe. Physical Review B, 2016, 94, .	1.1	287
182	Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe. Nature Communications, 2016, 7, 12167.	5.8	498
183	Zhao et al. reply. Nature, 2016, 539, E2-E3.	13.7	13
184	Understanding Nanostructuring Processes in Thermoelectrics and Their Effects on Lattice Thermal Conductivity. Advanced Materials, 2016, 28, 2737-2743.	11.1	54
185	Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dualâ€Doping Approach. Advanced Energy Materials, 2016, 6, 1502423.	10.2	178
186	Enhanced Thermoelectric Properties in the Counter-Doped SnTe System with Strained Endotaxial SrTe. Journal of the American Chemical Society, 2016, 138, 2366-2373.	6.6	269
187	High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS through nanostructuring grain size. Journal of Alloys and Compounds, 2016, 664, 411-416.	2.8	29
188	Thermoelectric transport properties of AgmPb100BimSe100+2m system. Journal of Materials Science: Materials in Electronics, 2016, 27, 2712-2717.	1.1	8
189	Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351, 141-144.	6.0	1,594
190	Low-cost, abundant binary sulfides as promising thermoelectric materials. Materials Today, 2016, 19, 227-239.	8.3	257
191	Superior thermoelectric performance in PbTe–PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration. Energy and Environmental Science, 2015, 8, 2056-2068.	15.6	185
192	Delaminated layered rare-earth hydroxide composites with ortho-coumaric acid: color-tunable luminescence and blue emission due to energy transfer. Journal of Materials Chemistry C, 2015, 3, 7143-7152.	2.7	22
193	Mechanical properties of low-cost, earth-abundant chalcogenide thermoelectric materials, PbSe and PbS, with additions of 0–4Â% CdS or ZnS. Journal of Materials Science, 2015, 50, 1770-1782.	1.7	36
194	Efficient Uranium Capture by Polysulfide/Layered Double Hydroxide Composites. Journal of the American Chemical Society, 2015, 137, 3670-3677.	6.6	404
195	Thermoelectric materials: Energy conversion between heat and electricity. Journal of Materiomics, 2015, 1, 92-105.	2.8	794
196	Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence. Journal of the American Chemical Society, 2015, 137, 5100-5112.	6.6	394
197	Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe. Journal of the American Chemical Society, 2015, 137, 11507-11516.	6.6	371
198	Synergistically optimized electrical and thermal transport properties of SnTe via alloying high-solubility MnTe. Energy and Environmental Science, 2015, 8, 3298-3312.	15.6	268

#	Article	IF	CITATIONS
199	BaCu ₂ Se ₂ based compounds as promising thermoelectric materials. Dalton Transactions, 2015, 44, 2285-2293.	1.6	32
200	Deposition and characterization of thermal barrier coatings of ZrO2–4 mol.% Y2O3–1 mol.% Gd2O3–1 mol.% Gd2O3–1 mol.% Yb2O3. Surface and Coatings Technology, 2015, 268, 205-208.	2.2	26
201	Extraordinary role of Hg in enhancing the thermoelectric performance of p-type SnTe. Energy and Environmental Science, 2015, 8, 267-277.	15.6	347
202	Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics. NPG Asia Materials, 2014, 6, e108-e108.	3.8	140
203	Significantly Enhanced Thermoelectric Performance in nâ€ŧype Heterogeneous BiAgSeS Composites. Advanced Functional Materials, 2014, 24, 7763-7771.	7.8	91
204	SnTe–AgBiTe ₂ as an efficient thermoelectric material with low thermal conductivity. Journal of Materials Chemistry A, 2014, 2, 20849-20854.	5.2	142
205	Layered oxychalcogenide in the Bi–Cu–O–Se system as good thermoelectric materials. Semiconductor Science and Technology, 2014, 29, 064001.	1.0	42
206	Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508, 373-377.	13.7	3,963
207	BiCuSeO oxyselenides: new promising thermoelectric materials. Energy and Environmental Science, 2014, 7, 2900-2924.	15.6	544
208	Theoretical Prediction and Experimental Confirmation of Unusual Ternary Ordered Semiconductor Compounds in Sr–Pb–S System. Journal of the American Chemical Society, 2014, 136, 1628-1635.	6.6	33
209	The phase stability and thermophysical properties of InFeO3(ZnO)m (m=2, 3, 4, 5). Journal of the European Ceramic Society, 2014, 34, 63-68.	2.8	20
210	Investigation of Semi-Insulating Cs ₂ Hg ₆ S ₇ and Cs ₂ Hg _{6-x} Cd _{<i>x</i>} S ₇ Alloy for Hard Radiation Detection. Crystal Growth and Design, 2014, 14, 5949-5956.	1.4	11
211	Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. Journal of Materials Chemistry A, 2014, 2, 17302-17306.	5.2	246
212	Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi ₂ Te ₃ Doping. Journal of the American Chemical Society, 2014, 136, 11412-11419.	6.6	319
213	The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. Journal of Materials Chemistry A, 2014, 2, 4903.	5.2	135
214	The panoscopic approach to high performance thermoelectrics. Energy and Environmental Science, 2014, 7, 251-268.	15.6	834
215	High Thermoelectric Performance of p-Type SnTe via a Synergistic Band Engineering and Nanostructuring Approach. Journal of the American Chemical Society, 2014, 136, 7006-7017.	6.6	553
216	LiPbSb ₃ S ₆ : A Semiconducting Sulfosalt with Very Low Thermal Conductivity. Inorganic Chemistry, 2014, 53, 673-675.	1.9	19

#	Article	IF	CITATIONS
217	Nanostructure-Assisted Phonon Scattering in Lead-Free Thermoelectric Materials: A TEM Investigation of the SnTe System. Microscopy and Microanalysis, 2014, 20, 438-439.	0.2	5
218	Photoconductivity in Tl ₆ SI ₄ : A Novel Semiconductor for Hard Radiation Detection. Chemistry of Materials, 2013, 25, 2868-2877.	3.2	45
219	High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity. Energy and Environmental Science, 2013, 6, 1750.	15.6	68
220	Evidence of an interlayer charge transfer route in BiCu1â^'xSeO. Journal of Materials Chemistry A, 2013, 1, 12154.	5.2	27
221	Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chemical Communications, 2013, 49, 8075.	2.2	111
222	High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Materials, 2013, 5, e47-e47.	3.8	349
223	OXYCHALCOGENIDES AS NEW EFFICIENT p-TYPE THERMOELECTRIC MATERIALS. Functional Materials Letters, 2013, 06, 1340007.	0.7	7
224	Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. Journal of Alloys and Compounds, 2013, 551, 649-653.	2.8	146
225	Direct synthesis of BiCuChO-type oxychalcogenides by mechanical alloying. Journal of Solid State Chemistry, 2013, 203, 187-191.	1.4	28
226	Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy and Environmental Science, 2013, 6, 2916.	15.6	326
227	All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy and Environmental Science, 2013, 6, 3346.	15.6	646
228	Superconductivity and mechanical properties for LaFe1-xZnxAsO0.85F0.15. Journal of Alloys and Compounds, 2013, 563, 261-263.	2.8	1
229	Role of Sodium Doping in Lead Chalcogenide Thermoelectrics. Journal of the American Chemical Society, 2013, 135, 4624-4627.	6.6	128
230	CsCdInQ ₃ (Q = Se, Te): New Photoconductive Compounds As Potential Materials for Hard Radiation Detection. Chemistry of Materials, 2013, 25, 2089-2099.	3.2	50
231	High-Performance Tellurium-Free Thermoelectrics: All-Scale Hierarchical Structuring of p-Type PbSe–MSe Systems (M = Ca, Sr, Ba). Journal of the American Chemical Society, 2013, 135, 5152-5160.	6.6	135
232	High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures. Journal of the American Chemical Society, 2013, 135, 7364-7370.	6.6	344
233	Influence of Te substitution on the structural and electronic properties of thermoelectric BiCuSeO. Journal of Materials Chemistry A, 2013, 1, 2921.	5.2	48
234	Influence of Pb doping on the electrical transport properties of BiCuSeO. Applied Physics Letters, 2013, 102, .	1.5	93

#	Article	IF	CITATIONS
235	Structural and Electronic Transport Properties in Sr-Doped BiCuSeO. Chemistry of Materials, 2012, 24, 3168-3178.	3.2	158
236	CsHgInS ₃ : a New Quaternary Semiconductor for Î ³ -ray Detection. Chemistry of Materials, 2012, 24, 4434-4441.	3.2	56
237	Morphology Control of Nanostructures: Na-Doped PbTe–PbS System. Nano Letters, 2012, 12, 5979-5984.	4.5	100
238	Raising the Thermoelectric Performance of p-Type PbS with Endotaxial Nanostructuring and Valence-Band Offset Engineering Using CdS and ZnS. Journal of the American Chemical Society, 2012, 134, 16327-16336.	6.6	308
239	Low temperature transport properties of the BiCuSeO system. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2273-2276.	0.8	20
240	Feasibility study of plasma sprayed Al2O3 coatings as diffusion barrier on CFC components. Frontiers of Mechanical Engineering, 2012, 7, 371-375.	2.5	0
241	Crystal Growth and Characterization of the X-ray and γ-ray Detector Material Cs ₂ Hg ₆ S ₇ . Crystal Growth and Design, 2012, 12, 3250-3256.	1.4	42
242	A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy and Environmental Science, 2012, 5, 8543.	15.6	333
243	Thermoelectrics with Earth Abundant Elements: High Performance p-type PbS Nanostructured with SrS and CaS. Journal of the American Chemical Society, 2012, 134, 7902-7912.	6.6	233
244	Strong Phonon Scattering by Layer Structured PbSnS ₂ in PbTe Based Thermoelectric Materials. Advanced Materials, 2012, 24, 4440-4444.	11.1	130
245	Telluriumâ€Free Thermoelectric: The Anisotropic <i>n</i> ‶ype Semiconductor Bi ₂ S ₃ . Advanced Energy Materials, 2012, 2, 634-638.	10.2	207
246	Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy and Environmental Science, 2012, 5, 7188.	15.6	240
247	Remarkable Enhancement in Thermoelectric Performance of BiCuSeO by Cu Deficiencies. Journal of the American Chemical Society, 2011, 133, 20112-20115.	6.6	268
248	High Performance Thermoelectrics from Earth-Abundant Materials: Enhanced Figure of Merit in PbS by Second Phase Nanostructures. Journal of the American Chemical Society, 2011, 133, 20476-20487.	6.6	433
249	InFeZnO4 as Promising Thermal Barrier Coatings. Journal of the American Ceramic Society, 2011, 94, 1664-1666.	1.9	21
250	Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying. Frontiers of Mechanical Engineering, 2011, 6, 324.	2.5	3
251	Preparation and characterization of nanocrystalline ZrO2-7%Y2O3 powders for thermal barrier coatings by high-energy ball milling. Frontiers of Mechanical Engineering, 2011, 6, 176.	2.5	0
252	Development of oxide based diffusion barrier coatings for CFC components applied in modern furnaces. Frontiers of Mechanical Engineering, 2011, 6, 392-396.	2.5	4

#	Article	IF	CITATIONS
253	Development of new transient liquid phase system Au-Sn-Au for microsystem technology. Frontiers of Mechanical Engineering in China, 2010, 5, 370-375.	0.4	13
254	Influence of the filler materials on flux-free brazing of pure aluminium (1050). Frontiers of Mechanical Engineering in China, 2010, 5, 47-51.	0.4	2
255	Brazing of ceramic-to-ceramic and ceramic-to-metal joints in air. Frontiers of Mechanical Engineering in China, 2010, 5, 125-129.	0.4	15
256	Application of cold spraying for flux-free brazing of aluminium alloy 6060. Frontiers of Mechanical Engineering in China, 2010, 5, 256-260.	0.4	3
257	Superconductivity at 15K in NdFe0.9Rh0.1AsO without F-doping. Physica C: Superconductivity and Its Applications, 2010, 470, 165-167.	0.6	6
258	Bi 1 â^' x Sr x CuSeO oxyselenides as promising thermoelectric materials. Applied Physics Letters, 2010, 97, .	1.5	339
259	Electronic phase diagram of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>NdFe</mml:mtext></mml:mrow><mml:m Physical Review B, 2010, 81, .</mml:m </mml:msub></mml:mrow></mml:math>	rowt⊁t <mm< td=""><td>l:mna≯1</td></mm<>	l:mna≯1
260	Effects of Co doping on the transport properties and superconductivity in CeFe _{1 â^'<i>x</i>} Co _{<i>x</i>} AsO. Journal of Physics Condensed Matter, 2010, 22, 115701.	0.7	20
261	Electrical transport properties of F-doped LaFeAsO oxypnictide. Journal of Alloys and Compounds, 2010, 508, 606-609.	2.8	11
262	High-performance nanostructured thermoelectric materials. NPG Asia Materials, 2010, 2, 152-158.	3.8	816
263	Development of a new wear resistant coating by arc spraying of a steel-based cored wire. Frontiers of Mechanical Engineering in China, 2009, 4, 1-4.	0.4	4
264	Effects of annealing on electrical properties of n-type Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2009, 467, 91-97.	2.8	115
265	Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound. Journal of Applied Physics, 2009, 105, .	1.1	120
266	Flux-free brazing of Mg-containing aluminium alloys by means of cold spraying. Frontiers of Mechanical Engineering in China, 2008, 3, 355-359.	0.4	3
267	Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Journal of Solid State Chemistry, 2008, 181, 3278-3282.	1.4	103
268	Improvement of Thermoelectric Performance of CoSb _{3â^'<i>x</i>} Te _{<i>x</i>} Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb. Chemistry of Materials, 2008, 20, 7526-7531.	3.2	147
269	Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2008, 455, 259-264.	2.8	366
270	Enhanced thermoelectric property originating from additional carrier pocket in skutterudite compounds. Applied Physics Letters, 2008, 93, .	1.5	31

#	Article	IF	CITATIONS
271	Effects of Sb compensation on microstructure, thermoelectric properties and point defect of CoSb3compound. Journal Physics D: Applied Physics, 2007, 40, 6784-6790.	1.3	89
272	Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering. Journal of Applied Physics, 2007, 102, .	1.1	205
273	Thermoelectric property of fine-grained CoSb3skutterudite compound fabricated by mechanical alloying and spark plasma sintering. Journal Physics D: Applied Physics, 2007, 40, 566-572.	1.3	74
274	Effects of process parameters on electrical properties of n-type Bi2Te3 prepared by mechanical alloying and spark plasma sintering. Physica B: Condensed Matter, 2007, 400, 11-15.	1.3	38
275	Carriers: the Less, the Faster. , 0, 1, 1-3.		22
276	Exploring Materials in An Open Lab. , 0, 1, .		2
277	SnSe/SnS: Multifunctions Beyond Thermoelectricity. , 0, 1, 1-20.		18