Kristina Schoonjans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7778028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	6α-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice. Gut, 2023, 72, 314-324.	6.1	36
2	Metabolic Messengers: bile acids. Nature Metabolism, 2022, 4, 416-423.	5.1	58
3	Identification of a Crosstalk among TGR5, GLIS2, and TP53 Signaling Pathways in the Control of Undifferentiated Germ Cell Homeostasis and Chemoresistance. Advanced Science, 2022, 9, e2200626.	5.6	6
4	Molecular physiology of bile acid signaling in health, disease, and aging. Physiological Reviews, 2021, 101, 683-731.	13.1	184
5	TGR5/Cathepsin E signaling regulates macrophage innate immune activation in liver ischemia and reperfusion injury. American Journal of Transplantation, 2021, 21, 1453-1464.	2.6	24
6	Pancreatic Sirtuin 3 Deficiency Promotes Hepatic Steatosis by Enhancing 5-Hydroxytryptamine Synthesis in Mice With Diet-Induced Obesity. Diabetes, 2021, 70, 119-131.	0.3	10
7	The transcriptional coactivator CBP/p300 is an evolutionarily conserved node that promotes longevity in response to mitochondrial stress. Nature Aging, 2021, 1, 165-178.	5.3	49
8	Dietary Fiber Is Essential to Maintain Intestinal Size, L-Cell Secretion, and Intestinal Integrity in Mice. Frontiers in Endocrinology, 2021, 12, 640602.	1.5	9
9	Nuclear receptors FXR and SHP regulate protein N-glycan modifications in the liver. Science Advances, 2021, 7, .	4.7	6
10	Central anorexigenic actions of bile acids are mediated by TGR5. Nature Metabolism, 2021, 3, 595-603.	5.1	64
11	Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice. International Journal of Molecular Sciences, 2021, 22, 7163.	1.8	6
12	Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metabolism, 2021, 33, 1483-1492.e10.	7.2	79
13	Emerging functions of the nuclear receptor LRH-1 in liver physiology and pathology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166145.	1.8	24
14	Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. Journal of Hepatology, 2021, 75, 634-646.	1.8	51
15	Compound 18 Improves Glucose Tolerance in a Hepatocyte TGR5-dependent Manner in Mice. Nutrients, 2020, 12, 2124.	1.7	12
16	Mechano-modulatory synthetic niches for liver organoid derivation. Nature Communications, 2020, 11, 3416.	5.8	112
17	Maternal glucose homeostasis is impaired in mouse models of gestational cholestasis. Scientific Reports, 2020, 10, 11523.	1.6	11
18	Transcriptomic analysis across liver diseases reveals disease-modulating activation of constitutive androstane receptor in cholestasis. JHEP Reports, 2020, 2, 100140.	2.6	6

#	Article	IF	CITATIONS
19	Bile Acids Signal via TGR5 to Activate Intestinal Stem Cells and Epithelial Regeneration. Gastroenterology, 2020, 159, 956-968.e8.	0.6	166
20	L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes, 2020, 69, 614-623.	0.3	54
21	TGR5 Regulates Macrophage Inflammation in Nonalcoholic Steatohepatitis by Modulating NLRP3 Inflammasome Activation. Frontiers in Immunology, 2020, 11, 609060.	2.2	47
22	The orphan nuclear receptor LRH-1/NR5a2 critically regulates T cell functions. Science Advances, 2019, 5, eaav9732.	4.7	20
23	The RNA-Binding Protein PUM2 Impairs Mitochondrial Dynamics and Mitophagy During Aging. Molecular Cell, 2019, 73, 775-787.e10.	4.5	100
24	A new class of protein biomarkers based on subcellular distribution: application to a mouse liver cancer model. Scientific Reports, 2019, 9, 6913.	1.6	12
25	Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents. American Journal of Physiology - Renal Physiology, 2019, 316, G574-G584.	1.6	42
26	Identifying gene function and module connections by the integration of multispecies expression compendia. Genome Research, 2019, 29, 2034-2045.	2.4	36
27	The G Protein-Coupled Bile Acid Receptor TGR5 (Gpbar1) Modulates Endothelin-1 Signaling in Liver. Cells, 2019, 8, 1467.	1.8	35
28	NTCP deficiency in mice protects against obesity and hepatosteatosis. JCI Insight, 2019, 4, .	2.3	21
29	LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus. Nature Communications, 2018, 9, 1488.	5.8	50
30	Transcriptional regulation by NR5A2 links differentiation and inflammation in the pancreas. Nature, 2018, 554, 533-537.	13.7	101
31	The Orphan Nuclear Receptor Liver Homolog Receptor-1 (Nr5a2) Regulates Ovarian Granulosa Cell Proliferation. Journal of the Endocrine Society, 2018, 2, 24-41.	0.1	32
32	TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nature Communications, 2018, 9, 245.	5.8	167
33	Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Molecular Metabolism, 2018, 11, 84-95.	3.0	135
34	De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature, 2018, 563, 354-359.	13.7	302
35	An Integrated Systems Genetics and Omics Toolkit to Probe Gene Function. Cell Systems, 2018, 6, 90-102.e4.	2.9	47
36	Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human βâ€defensinâ€1 and â€2 secretion by colonic epithelial cells. FASEB Journal, 2017, 31, 3848-3857.	0.2	21

#	Article	IF	CITATIONS
37	Ovary-specific depletion of the nuclear receptor Nr5a2 compromises expansion of the cumulus oophorus but not fertilization by intracytoplasmic sperm injectionâ€. Biology of Reproduction, 2017, 96, 1231-1243.	1.2	18
38	Small heterodimer partner deletion prevents hepatic steatosis and when combined with farnesoid X receptor loss protects against type 2 diabetes in mice. Hepatology, 2017, 66, 1854-1865.	3.6	34
39	Megatrends in bile acid receptor research. Hepatology Communications, 2017, 1, 831-835.	2.0	2
40	Plasma membraneâ€bound G protein–coupled bile acid receptor attenuates liver ischemia/reperfusion injury via the inhibition of tollâ€like receptor 4 signaling in mice. Liver Transplantation, 2017, 23, 63-74.	1.3	41
41	Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. Journal of Hepatology, 2017, 66, 132-141.	1.8	115
42	β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCl Insight, 2017, 2, .	2.3	41
43	Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. Journal of Clinical Investigation, 2017, 127, 583-592.	3.9	50
44	NAD ⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science, 2016, 352, 1436-1443.	6.0	907
45	LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer. Genes and Development, 2016, 30, 1255-1260.	2.7	56
46	Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology, 2016, 63, 1190-1204.	3.6	289
47	Bile acid-FXRα pathways regulate male sexual maturation in mice. Oncotarget, 2016, 7, 19468-19482.	0.8	23
48	Phosphorylation of the nuclear receptor corepressor 1 by protein kinase B switches its corepressor targets in the liver in mice. Hepatology, 2015, 62, 1606-1618.	3.6	46
49	The Sirt1 activator SRT3025 provides atheroprotection in Apoeâ^'/â^' mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. European Heart Journal, 2015, 36, 51-59.	1.0	117
50	Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nature Medicine, 2015, 21, 159-165.	15.2	562
51	Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications, 2015, 6, 7629.	5.8	274
52	Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein–Coupled Bile Acid Receptors. Endocrinology, 2015, 156, 3961-3970.	1.4	253
53	TGR5 and Immunometabolism: Insights from Physiology and Pharmacology. Trends in Pharmacological Sciences, 2015, 36, 847-857.	4.0	114
54	LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPARÎ ³ ligand synthesis. Nature Communications, 2015, 6, 6801.	5.8	46

#	Article	IF	CITATIONS
55	Molecular basis for the regulation of the nuclear receptor LRH-1. Current Opinion in Cell Biology, 2015, 33, 26-34.	2.6	58
56	Loss of Sirt1 Function Improves Intestinal Anti-Bacterial Defense and Protects from Colitis-Induced Colorectal Cancer. PLoS ONE, 2014, 9, e102495.	1.1	41
57	SIRT2 Deficiency Modulates Macrophage Polarization and Susceptibility to Experimental Colitis. PLoS ONE, 2014, 9, e103573.	1.1	111
58	Bile acids alter male fertility through G-protein-coupled bile acid receptor 1 signaling pathways in mice. Hepatology, 2014, 60, 1054-1065.	3.6	47
59	TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation. Journal of Clinical Investigation, 2014, 124, 5424-5436.	3.9	166
60	<i>Nr5a2</i> heterozygosity sensitises to, and cooperates with, inflammation in <i>KRas^{G12V}-</i> driven pancreatic tumourigenesis. Gut, 2014, 63, 647-655.	6.1	87
61	Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle. Cell Metabolism, 2014, 19, 1034-1041.	7.2	211
62	Hepatic glucose sensing and integrative pathways in the liver. Cellular and Molecular Life Sciences, 2014, 71, 1453-1467.	2.4	78
63	Vitamin D and energy homeostasis—of mice and men. Nature Reviews Endocrinology, 2014, 10, 79-87.	4.3	121
64	A SIRT7-Dependent Acetylation Switch of GABPβ1 Controls Mitochondrial Function. Cell Metabolism, 2014, 20, 856-869.	7.2	214
65	SUMOylation-Dependent LRH-1/PROX1 Interaction Promotes Atherosclerosis by Decreasing Hepatic Reverse Cholesterol Transport. Cell Metabolism, 2014, 20, 603-613.	7.2	73
66	Another Shp on the Horizon for Bile Acids. Cell Metabolism, 2014, 20, 203-205.	7.2	3
67	Liver receptor homolog-1 is essential for pregnancy. Nature Medicine, 2013, 19, 1061-1066.	15.2	92
68	The NAD+/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell, 2013, 154, 430-441.	13.5	951
69	Transcriptional regulation of adipocyte formation by the liver receptor homologue 1 (Lrh1)—Small hetero-dimerization partner (Shp) network. Molecular Metabolism, 2013, 2, 314-323.	3.0	10
70	The Receptor TGR5 Mediates the Prokinetic Actions of Intestinal Bile Acids and Is Required for Normal Defecation in Mice. Gastroenterology, 2013, 144, 145-154.	0.6	265
71	The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology, 2013, 58, 1451-1460.	3.6	154
72	Probing the Binding Site of Bile Acids in TGR5. ACS Medicinal Chemistry Letters, 2013, 4, 1158-1162.	1.3	36

5

#	Article	IF	CITATIONS
73	NR5A2 Regulates Lhb and Fshb Transcription in Gonadotrope-Like Cells In Vitro, but Is Dispensable for Gonadotropin Synthesis and Fertility In Vivo. PLoS ONE, 2013, 8, e59058.	1.1	22
74	The TGR5 receptor mediates bile acid–induced itch and analgesia. Journal of Clinical Investigation, 2013, 123, 1513-1530.	3.9	301
75	TGR5, bile acids and the metabolic syndrome FASEB Journal, 2013, 27, 453.1.	0.2	0
76	TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Scientific Reports, 2012, 2, 430.	1.6	143
77	Systems Genetics of Metabolism: The Use of the BXD Murine Reference Panel for Multiscalar Integration of Traits. Cell, 2012, 150, 1287-1299.	13.5	212
78	The NAD+ Precursor Nicotinamide Riboside Enhances Oxidative Metabolism and Protects against High-Fat Diet-Induced Obesity. Cell Metabolism, 2012, 15, 838-847.	7.2	957
79	Bile Acid Binding Resin Improves Metabolic Control through the Induction of Energy Expenditure. PLoS ONE, 2012, 7, e38286.	1.1	93
80	Local glucocorticoid production in the mouse lung is induced by immune cell stimulation. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 227-234.	2.7	56
81	LRH-1–dependent glucose sensing determines intermediary metabolism in liver. Journal of Clinical Investigation, 2012, 122, 2817-2826.	3.9	94
82	NCoR1 Is a Conserved Physiological Modulator of Muscle Mass and Oxidative Function. Cell, 2011, 147, 827-839.	13.5	228
83	PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation. Cell Metabolism, 2011, 13, 461-468.	7.2	673
84	Mitochondrial Matrix Calcium Is an Activating Signal for Hormone Secretion. Cell Metabolism, 2011, 13, 601-611.	7.2	137
85	TGR5 Activation Inhibits Atherosclerosis by Reducing Macrophage Inflammation and Lipid Loading. Cell Metabolism, 2011, 14, 747-757.	7.2	469
86	Emerging actions of the nuclear receptor LRH-1 in the gut. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 947-955.	1.8	77
87	The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. Journal of Hepatology, 2011, 54, 1263-1272.	1.8	328
88	Lack of ILâ€⊋ in PPARâ€Î±â€deficient mice triggers allergic contact dermatitis by affecting regulatory T cells. European Journal of Immunology, 2011, 41, 1980-1991.	1.6	20
89	Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the <i>Mdr2</i> ^{â^'/â^'} (<i>Abcb4</i> ^{â^'/â^'}) mouse cholangiopathy model by promoting biliary HCO 3â^' output. Hepatology, 2011, 54, 1303-1312.	3.6	193
90	Lowering Bile Acid Pool Size with a Synthetic Farnesoid X Receptor (FXR) Agonist Induces Obesity and Diabetes through Reduced Energy Expenditure. Journal of Biological Chemistry, 2011, 286, 26913-26920.	1.6	221

#	Article	IF	CITATIONS
91	The Bile Acid Membrane Receptor TGR5: A Valuable Metabolic Target. Digestive Diseases, 2011, 29, 37-44.	0.8	135
92	Structureâ´'Activity Relationship Study of Betulinic Acid, A Novel and Selective TGR5 Agonist, and Its Synthetic Derivatives: Potential Impact in Diabetes. Journal of Medicinal Chemistry, 2010, 53, 178-190.	2.9	180
93	Targeting the TGR5-GLP-1 pathway to combat typeÂ2 diabetes and non-alcoholic fatty liver disease. Gastroenterologie Clinique Et Biologique, 2010, 34, 270-273.	0.9	17
94	Redefining the TGR5 Triterpenoid Binding Pocket at the Câ€3 Position. ChemMedChem, 2010, 5, 1983-1988.	1.6	24
95	Raised hepatic bile acid concentrations during pregnancy in mice are associated with reduced farnesoid X receptor function. Hepatology, 2010, 52, 1341-1349.	3.6	85
96	Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene, 2010, 29, 4617-4624.	2.6	151
97	Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNFαâ€dependent manner. FASEB Journal, 2010, 24, 1340-1346.	0.2	42
98	Mitochondrial matrix pH controls oxidative phosphorylation and metabolismâ€secretion coupling in INSâ€1E clonal β cells. FASEB Journal, 2010, 24, 4613-4626.	0.2	49
99	The Intestinal Nuclear Receptor Signature With Epithelial Localization Patterns and Expression Modulation in Tumors. Gastroenterology, 2010, 138, 636-648.e12.	0.6	80
100	Histone Methyl Transferases and Demethylases; CanÂThey Link Metabolism and Transcription?. Cell Metabolism, 2010, 12, 321-327.	7.2	231
101	Discovery of 6α-Ethyl-23(<i>S</i>)-methylcholic Acid (<i>S</i> -EMCA, INT-777) as a Potent and Selective Agonist for the TGR5 Receptor, a Novel Target for Diabesity. Journal of Medicinal Chemistry, 2009, 52, 7958-7961.	2.9	220
102	TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis. Cell Metabolism, 2009, 10, 167-177.	7.2	1,465
103	The orphan nuclear receptor small heterodimer partner mediates male infertility induced by diethylstilbestrol in mice. Journal of Clinical Investigation, 2009, 119, 3752-3764.	3.9	51
104	Structure-Based Design of a Superagonist Ligand for the Vitamin D Nuclear Receptor. Chemistry and Biology, 2008, 15, 383-392.	6.2	49
105	Novel Potent and Selective Bile Acid Derivatives as TGR5 Agonists: Biological Screening, Structureâ''Activity Relationships, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2008, 51, 1831-1841.	2.9	259
106	Targeting bile-acid signalling for metabolic diseases. Nature Reviews Drug Discovery, 2008, 7, 678-693.	21.5	1,084
107	Bile Acids and the Membrane Bile Acid Receptor TGR5—Connecting Nutrition and Metabolism. Thyroid, 2008, 18, 167-174.	2.4	139
108	Molecular Field Analysis and 3D-Quantitative Structureâ´`Activity Relationship Study (MFA 3D-QSAR) Unveil Novel Features of Bile Acid Recognition at TGR5. Journal of Chemical Information and Modeling, 2008, 48, 1792-1801.	2.5	23

#	Article	IF	CITATIONS
109	Cholesterol supply and SREBPs modulate transcription of the Niemann-Pick C-1 gene in steroidogenic tissues. Journal of Lipid Research, 2008, 49, 1024-1033.	2.0	31
110	Liver receptor homolog 1 is essential for ovulation. Genes and Development, 2008, 22, 1871-1876.	2.7	182
111	The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-11±. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17187-17192.	3.3	180
112	Cell cycleâ€dependent regulation of extraâ€adrenal glucocorticoid synthesis in murine intestinal epithelial cells. FASEB Journal, 2008, 22, 4117-4125.	0.2	35
113	Peroxisome Proliferator-Activated Receptor-α Activation Inhibits Langerhans Cell Function. Journal of Immunology, 2007, 178, 4362-4372.	0.4	39
114	Compromised Intestinal Lipid Absorption in Mice with a Liver-Specific Deficiency of Liver Receptor Homolog 1. Molecular and Cellular Biology, 2007, 27, 8330-8339.	1.1	135
115	Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10703-10708.	3.3	95
116	LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13098-13103.	3.3	136
117	The small heterodimer partner is a gonadal gatekeeper of sexual maturation in male mice. Genes and Development, 2007, 21, 303-315.	2.7	81
118	Sirtuins: The â€~ <i>magnificent seven</i> ', function, metabolism and longevity. Annals of Medicine, 2007, 39, 335-345.	1.5	394
119	Sirtuin Functions in Health and Disease. Molecular Endocrinology, 2007, 21, 1745-1755.	3.7	409
120	Nongenomic Actions of Bile Acids. Synthesis and Preliminary Characterization of 23- and 6,23-Alkyl-Substituted Bile Acid Derivatives as Selective Modulators for the G-Protein Coupled Receptor TGR5. Journal of Medicinal Chemistry, 2007, 50, 4265-4268.	2.9	97
121	Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439, 484-489.	13.7	1,818
122	The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. Journal of Experimental Medicine, 2006, 203, 2057-2062.	4.2	111
123	Liver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2058-2062.	3.3	138
124	Adipose Tissue Expression of the Lipid Droplet-Associating Proteins S3-12 and Perilipin Is Controlled by Peroxisome Proliferator-Activated Receptor-Â. Diabetes, 2004, 53, 1243-1252.	0.3	186
125	Peroxisome Proliferator-Activated Receptor (PPAR)- \hat{l}^2/\hat{l}^2 Stimulates Differentiation and Lipid Accumulation in Keratinocytes. Journal of Investigative Dermatology, 2004, 122, 971-983.	0.3	206
126	LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends in Cell Biology, 2004, 14, 250-260.	3.6	388

#	Article	IF	CITATIONS
127	Synergy between LRH-1 and β-Catenin Induces G1 Cyclin-Mediated Cell Proliferation. Molecular Cell, 2004, 15, 499-509.	4.5	257
128	Pancreatic-Duodenal Homeobox 1 Regulates Expression of Liver Receptor Homolog 1 during Pancreas Development. Molecular and Cellular Biology, 2003, 23, 6713-6724.	1.1	86
129	Liver Receptor Homolog 1 Controls the Expression of Carboxyl Ester Lipase. Journal of Biological Chemistry, 2003, 278, 35725-35731.	1.6	52
130	Nonlinear partial differential equations and applications: Progesterone receptor knockout mice have an improved glucose homeostasis secondary to Â-cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15644-15648.	3.3	142
131	The Small Heterodimer Partner Interacts with the Liver X Receptor \hat{I}_{\pm} and Represses Its Transcriptional Activity. Molecular Endocrinology, 2002, 16, 2065-2076.	3.7	182
132	Topical Peroxisome Proliferator Activated Receptor-α Activators Reduce Inflammation in Irritant and Allergic Contact Dermatitis Models11The authors declared no conflict of interest Journal of Investigative Dermatology, 2002, 118, 94-101.	0.3	157
133	Role of Peroxisome Proliferator-Activated Receptor α in Epidermal Development in Utero. Journal of Investigative Dermatology, 2002, 119, 1298-1303.	0.3	45
134	A sharper image of SHP. Nature Medicine, 2002, 8, 789-791.	15.2	16
135	The Role of PPARâ€Î³/RXRâ€Î± Heterodimers in the Regulation of Human Trophoblast Invasion. Annals of the New York Academy of Sciences, 2002, 973, 26-30.	1.8	53
136	Liver receptor homolog 1 controls the expression of the scavenger receptor class B type I. EMBO Reports, 2002, 3, 1181-1187.	2.0	131
137	Xol INXS: role of the liver X and the farnesol X receptors. Current Opinion in Lipidology, 2001, 12, 113-120.	1.2	22
138	Attenuation of Colon Inflammation through Activators of the Retinoid X Receptor (Rxr)/Peroxisome Proliferator–Activated Receptor γ (Pparl³) Heterodimer. Journal of Experimental Medicine, 2001, 193, 827-838.	4.2	416
139	PPARÂ/RXRÂ Heterodimers Control Human Trophoblast Invasion. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5017-5024.	1.8	97
140	Expression of peroxisome proliferator-activated receptor γ (PPARγ) in normal human pancreatic islet cells. Diabetologia, 2000, 43, 1165-1169.	2.9	183
141	Farnesol Stimulates Differentiation in Epidermal Keratinocytes via PPARα. Journal of Biological Chemistry, 2000, 275, 11484-11491.	1.6	93
142	Induction of LPL gene expression by sterols is mediated by a sterol regulatory element and is independent of the presence of multiple E boxes. Journal of Molecular Biology, 2000, 304, 323-334.	2.0	69
143	Molecular Basis for Feedback Regulation of Bile Acid Synthesis by Nuclear Receptors. Molecular Cell, 2000, 6, 507-515.	4.5	1,321
144	Thiazolidinediones: an update. Lancet, The, 2000, 355, 1008-1010.	6.3	201

9

#	Article	IF	CITATIONS
145	3-Hydroxy-3-methylglutaryl CoA reductase inhibitors reduce serum triglyceride levels through modulation of apolipoprotein C-III and lipoprotein lipase. FEBS Letters, 1999, 452, 160-164.	1.3	80
146	Regulation of Peroxisome Proliferator-Activated Receptor Î ³ Expression by Adipocyte Differentiation and Determination Factor 1/Sterol Regulatory Element Binding Protein 1: Implications for Adipocyte Differentiation and Metabolism. Molecular and Cellular Biology, 1999, 19, 5495-5503.	1.1	395
147	Régulation transcriptionnelle du métabolisme du cholestérol Medecine/Sciences, 1999, 15, 56.	0.0	2
148	Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation, 1998, 98, 2088-2093.	1.6	1,540
149	Transcriptional Regulation of Apolipoprotein A-I Gene Expression by the Nuclear Receptor RORα. Journal of Biological Chemistry, 1997, 272, 22401-22404.	1.6	127
150	The Organization, Promoter Analysis, and Expression of the Human PPARÎ ³ Gene. Journal of Biological Chemistry, 1997, 272, 18779-18789.	1.6	1,034
151	Coordinate Regulation of the Expression of the Fatty Acid Transport Protein and Acyl-CoA Synthetase Genes by PPARI± and PPARγ Activators. Journal of Biological Chemistry, 1997, 272, 28210-28217.	1.6	464
152	Peroxisome proliterator-activated receptors, orphans with ligands and functions. Current Opinion in Lipidology, 1997, 8, 159-166.	1.2	455
153	The effects of fibrates and thiazolidinediones on plasma triglyceride metabolism are mediated by distinct peroxisome proliferator activated receptors (PPARs). Biochimie, 1997, 79, 95-99.	1.3	71
154	Regulation of Triglyceride Metabolism by PPARs : Fibrates and Thiazolidinediones have Distinct Effects. Journal of Atherosclerosis and Thrombosis, 1996, 3, 81-89.	0.9	104
155	Retinoids Increase Human Apolipoprotein A-II Expression through Activation of the Retinoid X Receptor but Not the Retinoic Acid Receptor. Molecular and Cellular Biology, 1996, 16, 3350-3360.	1.1	57
156	Induction of the Acyl-Coenzyme A Synthetase Gene by Fibrates and Fatty Acids Is Mediated by a Peroxisome Proliferator Response Element in the C Promoter. Journal of Biological Chemistry, 1995, 270, 19269-19276.	1.6	344
157	Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor Journal of Clinical Investigation, 1995, 96, 741-750.	3.9	350
158	A Fos-Jun element in the first intron of an α2u-globulin gene. Molecular and Cellular Biochemistry, 1993, 125, 127-136.	1.4	6
159	Acyl-CoA synthetase mRNA expression is controlled by fibric-acid derivatives, feeding and liver proliferation. FEBS Journal, 1993, 216, 615-622.	0.2	100
160	Developmental extinction of liver lipoprotein lipase mRNA expression might be regulated by an NF-1-like site. FEBS Letters, 1993, 329, 89-95.	1.3	21
161	Lipoprotein Lipase: Recent Contributions from Molecular Biology. Critical Reviews in Clinical Laboratory Sciences, 1992, 29, 243-268.	2.7	135
162	New Insights into Apolipoprotein B and Low Density Lipoprotein Physiology; Implications for Atherosclerosis. Acta Clinica Belgica, 1991, 46, 355-358.	0.5	3