Albert S Baldwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7777415/publications.pdf

Version: 2024-02-01

70961 128067 20,166 60 41 60 citations h-index g-index papers 61 61 61 20087 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	THE NF-κB AND IκB PROTEINS: New Discoveries and Insights. Annual Review of Immunology, 1996, 14, 649-681.	9.5	5,787
2	NF-B Antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to Suppress Caspase-8 Activation. , $1998, 281, 1680-1683$.		2,477
3	NF-κB Controls Cell Growth and Differentiation through Transcriptional Regulation of Cyclin D1. Molecular and Cellular Biology, 1999, 19, 5785-5799.	1.1	1,242
4	Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. Journal of Clinical Investigation, 2001, 107, 241-246.	3.9	1,173
5	Control of inducible chemoresistance: Enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nature Medicine, 1999, 5, 412-417.	15.2	948
6	Characterization of an immediate-early gene induced in adherent monocytes that encodes lîºB-like activity. Cell, 1991, 65, 1281-1289.	13.5	761
7	Akt Suppresses Apoptosis by Stimulating the Transactivation Potential of the RelA/p65 Subunit of NF-κB. Molecular and Cellular Biology, 2000, 20, 1626-1638.	1.1	618
8	NF-κB Induces Expression of the Bcl-2 Homologue A1/Bfl-1 To Preferentially Suppress Chemotherapy-Induced Apoptosis. Molecular and Cellular Biology, 1999, 19, 5923-5929.	1.1	549
9	NF-κB as a therapeutic target in cancer. Trends in Molecular Medicine, 2002, 8, 385-389.	3.5	544
10	Requirement of NF-κB Activation to Suppress p53-Independent Apoptosis Induced by Oncogenic Ras. Science, 1997, 278, 1812-1815.	6.0	527
11	Akt-dependent regulation of NF-κB is controlled by mTOR and Raptor in association with IKK. Genes and Development, 2008, 22, 1490-1500.	2.7	524
12	A nucleosomal function for lîºB kinase-α in NF-κB-dependent gene expression. Nature, 2003, 423, 659-663.	13.7	510
13	Selective activation of NF-κB subunits in human breast cancer: potential roles for NF-κB2/p52 and for Bcl-3. Oncogene, 2000, 19, 1123-1131.	2.6	418
14	Oncogenic Ha-Ras-induced Signaling Activates NF-κB Transcriptional Activity, Which Is Required for Cellular Transformation. Journal of Biological Chemistry, 1997, 272, 24113-24116.	1.6	344
15	Activation of Nuclear Factor-κB-dependent Transcription by Tumor Necrosis Factor-α Is Mediated through Phosphorylation of RelA/p65 on Serine 529. Journal of Biological Chemistry, 1998, 273, 29411-29416.	1.6	335
16	Oncogenic EGFR Signaling Activates an mTORC2–NF-κB Pathway That Promotes Chemotherapy Resistance. Cancer Discovery, 2011, 1, 524-538.	7.7	275
17	Regulation of cell death and autophagy by IKK and NFâ€ÎºB: critical mechanisms in immune function and cancer. Immunological Reviews, 2012, 246, 327-345.	2.8	250
18	The NF-κB Pathway and Cancer Stem Cells. Cells, 2016, 5, 16.	1.8	198

#	Article	IF	CITATIONS
19	NF-κB and IκBα Are Found in the Mitochondria. Journal of Biological Chemistry, 2003, 278, 2963-2968.	1.6	171
20	Requirement of the NF-κB Subunit p65/RelA for K-Ras–Induced Lung Tumorigenesis. Cancer Research, 2010, 70, 3537-3546.	0.4	170
21	The Putative Oncoprotein Bcl-3 Induces Cyclin D1 To Stimulate G 1 Transition. Molecular and Cellular Biology, 2001, 21, 8428-8436.	1.1	169
22	VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma. Science, 2018, 361, 290-295.	6.0	134
23	IKK-i/IKKϵ Controls Constitutive, Cancer Cell-associated NF-κB Activity via Regulation of Ser-536 p65/RelA Phosphorylation. Journal of Biological Chemistry, 2006, 281, 26976-26984.	1.6	133
24	Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes and Development, 2006, 20, 225-235.	2.7	123
25	Akt-dependent Activation of mTORC1 Complex Involves Phosphorylation of mTOR (Mammalian Target of) Tj ETÇ)q1_1_0.78 1.6	4314 rgBT /
26	Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia. European Journal of Translational Myology, 2018, 28, 7590.	0.8	109
27	Deletion of the NF-κB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood, 2013, 121, 5015-5024.	0.6	104
28	The NPC derived C15 LMP1 protein confers enhanced activation of NF- $\hat{1}^{\circ}$ B and induction of the EGFR in epithelial cells. Oncogene, 1998, 16, 1869-1877.	2.6	99
29	Apoptosis Promotes a Caspase-induced Amino-terminal Truncation of lîºBî± That Functions as a Stable Inhibitor of NF-κB. Journal of Biological Chemistry, 1999, 274, 20664-20670.	1.6	86
30	IKKα and IKKβ Each Function to Regulate NF-κB Activation in the TNF-Induced/Canonical Pathway. PLoS ONE, 2010, 5, e9428.	1.1	84
31	GSK-3α Promotes Oncogenic KRAS Function in Pancreatic Cancer via TAK1–TAB Stabilization and Regulation of Noncanonical NF-βB. Cancer Discovery, 2013, 3, 690-703.	7.7	78
32	Oncogenic PI3K Mutations Lead to NF-κB–Dependent Cytokine Expression following Growth Factor Deprivation. Cancer Research, 2012, 72, 3260-3269.	0.4	74
33	Differential Involvement of l [®] B Kinases α and β in Cytokine- and Insulin-Induced Mammalian Target of Rapamycin Activation Determined by Akt. Journal of Immunology, 2008, 180, 7582-7589.	0.4	68
34	Regulation of Mammalian Target of Rapamycin Activity in PTEN-Inactive Prostate Cancer Cells by l [®] B Kinase l±. Cancer Research, 2007, 67, 6263-6269.	0.4	67
35	p85α SH2 Domain Phosphorylation by IKK Promotes Feedback Inhibition of PI3K and Akt in Response to Cellular Starvation. Molecular Cell, 2012, 45, 719-730.	4.5	63
36	TBK1 Is a Synthetic Lethal Target in Cancer with <i>VHL</i> Loss. Cancer Discovery, 2020, 10, 460-475.	7.7	63

#	Article	IF	Citations
37	Expanding the View of IKK: New Substrates and New Biology. Trends in Cell Biology, 2021, 31, 166-178.	3.6	54
38	Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer. Cells, 2018, 7, 139.	1.8	53
39	IKK/Nuclear Factor-kappaB and Oncogenesis. Advances in Cancer Research, 2014, 121, 125-145.	1.9	52
40	PI3K/Akt promotes feedforward mTORC2 activation through IKKα. Oncotarget, 2016, 7, 21064-21075.	0.8	49
41	NEMO-Binding Domain Peptide Inhibits Constitutive NF-κB Activity and Reduces Tumor Burden in a Canine Model of Relapsed, Refractory Diffuse Large B-Cell Lymphoma. Clinical Cancer Research, 2011, 17, 4661-4671.	3.2	48
42	Noncanonical NF-κB in Cancer. Biomedicines, 2018, 6, 66.	1.4	48
43	Thioridazine inhibits self-renewal in breast cancer cells via DRD2-dependent STAT3 inhibition, but induces a G1 arrest independent of DRD2. Journal of Biological Chemistry, 2018, 293, 15977-15990.	1.6	42
44	Genome-wide Screening Identifies SFMBT1 as an Oncogenic Driver in Cancer with VHL Loss. Molecular Cell, 2020, 77, 1294-1306.e5.	4.5	41
45	A Phase I Clinical Trial of Systemically Delivered NEMO Binding Domain Peptide in Dogs with Spontaneous Activated B-Cell like Diffuse Large B-Cell Lymphoma. PLoS ONE, 2014, 9, e95404.	1.1	39
46	IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance. Oncotarget, 2016, 7, 69173-69187.	0.8	37
47	Addressing Reported Pro-Apoptotic Functions of NF-κB: Targeted Inhibition of Canonical NF-κB Enhances the Apoptotic Effects of Doxorubicin. PLoS ONE, 2009, 4, e6992.	1.1	34
48	Development of a High-Throughput Assay for Identifying Inhibitors of TBK1 and IKKε. PLoS ONE, 2012, 7, e41494.	1.1	34
49	Non-Canonical EZH2 Transcriptionally Activates RelB in Triple Negative Breast Cancer. PLoS ONE, 2016, 11, e0165005.	1.1	34
50	IKK is a therapeutic target in KRAS-induced lung cancer with disrupted p53 activity. Genes and Cancer, 2014, 5, 41-55.	0.6	31
51	Cytosolic DNA Promotes Signal Transducer and Activator of Transcription 3 (STAT3) Phosphorylation by TANK-binding Kinase 1 (TBK1) to Restrain STAT3 Activity. Journal of Biological Chemistry, 2017, 292, 5405-5417.	1.6	29
52	TBK1 Limits mTORC1 by Promoting Phosphorylation of Raptor Ser877. Scientific Reports, 2019, 9, 13470.	1.6	27
53	ll $^{\circ}$ B kinase $^{\circ}$ 2 inhibition induces cell death in Imatinib-resistant and T315I Dasatinib-resistant BCR-ABL+ cells. Molecular Cancer Therapeutics, 2008, 7, 391-397.	1.9	26
54	USP37 promotes deubiquitination of HIF2 $\hat{l}\pm$ in kidney cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13023-13032.	3.3	24

#	Article	IF	CITATIONS
55	IKK promotes cytokine-induced and cancer-associated AMPK activity and attenuates phenformin-induced cell death in LKB1-deficient cells. Science Signaling, 2018, 11, .	1.6	21
56	Loss of IKKβ but Not NF-κB p65 Skews Differentiation towards Myeloid over Erythroid Commitment and Increases Myeloid Progenitor Self-Renewal and Functional Long-Term Hematopoietic Stem Cells. PLoS ONE, 2015, 10, e0130441.	1.1	16
57	Signal transducer and activator of transcription 3 (<i>Stat3</i>) regulates host defense and protects mice against herpes simplex virus-1 (HSV-1) infection. Journal of Leukocyte Biology, 2017, 101, 1053-1064.	1.5	14
58	Selective Effects of Thioridazine on Self-Renewal of Basal-Like Breast Cancer Cells. Scientific Reports, 2019, 9, 18695.	1.6	11
59	Genome-wide DNA methylation analysis of KRAS mutant cell lines. Scientific Reports, 2020, 10, 10149.	1.6	7
60	Using RNA Interference in Lung Cancer Cells to Target the IKK-NF-κB Pathway. Methods in Molecular Biology, 2015, 1280, 447-458.	0.4	1