Ling Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776572/publications.pdf

Version: 2024-02-01

203 papers 13,451 citations

65 h-index 25787 108 g-index

212 all docs

212 docs citations

times ranked

212

16357 citing authors

#	Article	IF	CITATIONS
1	Ferrocene-functionalized core–shell lanthanide-doped upconversion nanoparticles: NIR light promoted chemodynamic therapy and luminescence imaging of solid tumors. Chemical Engineering Journal, 2022, 438, 135637.	12.7	13
2	Wavelengthâ€Selective Lightâ€Controlled Stepwise Photolysis from Single Gold Nanoparticles. Advanced Healthcare Materials, 2021, 10, 2000321.	7.6	2
3	CaSc2O4 hosted upconversion and downshifting luminescence. Journal of Materials Chemistry C, 2021, 9, 3800-3805.	5.5	4
4	Unravelling intramolecular charge transfer in donor–acceptor structured g-C ₃ N ₄ for superior photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 1207-1212.	10.3	40
5	Trap Energy Upconversionâ€Like Nearâ€Infrared to Nearâ€Infrared Light Rejuvenateable Persistent Luminescence. Advanced Materials, 2021, 33, e2008722.	21.0	66
6	Enzymatic enhancing of triplet–triplet annihilation upconversion by breaking oxygen quenching for background-free biological sensing. Nature Communications, 2021, 12, 1898.	12.8	48
7	Persistentâ€Luminescence Phosphors: Trap Energy Upconversionâ€Like Nearâ€Infrared to Nearâ€Infrared Light Rejuvenateable Persistent Luminescence (Adv. Mater. 15/2021). Advanced Materials, 2021, 33, 2170118.	21.0	3
8	Chemical-Pressure-Modulated BaTiO ₃ Thin Films with Large Spontaneous Polarization and High Curie Temperature. Journal of the American Chemical Society, 2021, 143, 6491-6497.	13.7	37
9	Perovskite Oxides for Cathodic Electrocatalysis of Energyâ€Related Gases: From O ₂ to CO ₂ and N ₂ . Advanced Functional Materials, 2021, 31, 2101872.	14.9	21
10	Enhancing Rechargeable Persistent Luminescence via Organic Dye Sensitization. Angewandte Chemie, 2021, 133, 16022-16026.	2.0	3
11	Colour modulation and enhancement of upconversion emissions in K2NaScF6:Yb/Ln (LnÂ= Er, Ho, Tm) nanocrystals. Journal of Rare Earths, 2021, 39, 1477-1483.	4.8	8
12	InnenrÃ $\frac{1}{4}$ cktitelbild: Enhancing Rechargeable Persistent Luminescence via Organic Dye Sensitization (Angew. Chem. 29/2021). Angewandte Chemie, 2021, 133, 16375-16375.	2.0	0
13	A luminescent view of the clickable assembly of LnF3 nanoclusters. Nature Communications, 2021, 12, 2948.	12.8	6
14	Enhancing Rechargeable Persistent Luminescence via Organic Dye Sensitization. Angewandte Chemie - International Edition, 2021, 60, 15886-15890.	13.8	26
15	Three-Dimensional Colloidal Controlled Growth of Core–Shell Heterostructured Persistent Luminescence Nanocrystals. Nano Letters, 2021, 21, 4903-4910.	9.1	32
16	Selfâ€Assembled Metal–Organic Framework Stabilized Organic Cocrystals for Biological Phototherapy. Angewandte Chemie - International Edition, 2021, 60, 23569-23573.	13.8	32
17	Selfâ€Assembled Metal–Organic Framework Stabilized Organic Cocrystals for Biological Phototherapy. Angewandte Chemie, 2021, 133, 23761.	2.0	2
18	Titelbild: Selfâ€Assembled Metal–Organic Framework Stabilized Organic Cocrystals for Biological Phototherapy (Angew. Chem. 44/2021). Angewandte Chemie, 2021, 133, 23657-23657.	2.0	0

#	Article	IF	CITATIONS
19	<i>In situ</i> exsolved Co components on wood ear-derived porous carbon for catalyzing oxygen reduction over a wide pH range. Journal of Materials Chemistry A, 2021, 9, 10695-10703.	10.3	16
20	Long wavelength single photon like driven photolysis via triplet triplet annihilation. Nature Communications, 2021, 12, 122.	12.8	38
21	Design of Layerâ€6tructured KAlF ₄ :Yb/Er for Pressureâ€Enhanced Upconversion Luminescence. Advanced Optical Materials, 2020, 8, 1901031.	7.3	20
22	Templatedâ€Construction of Hollow MoS ₂ Architectures with Improved Photoresponses. Advanced Science, 2020, 7, 2002444.	11.2	13
23	Highly Effective Near-Infrared Activating Triplet–Triplet Annihilation Upconversion for Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 18460-18470.	13.7	87
24	Afterglow Nanoparticles: Coloring Afterglow Nanoparticles for Highâ€Contrast Timeâ€Gatingâ€Free Multiplex Luminescence Imaging (Adv. Mater. 49/2020). Advanced Materials, 2020, 32, 2070371.	21.0	0
25	Coloring Afterglow Nanoparticles for Highâ€Contrast Timeâ€Gatingâ€Free Multiplex Luminescence Imaging. Advanced Materials, 2020, 32, e2003881.	21.0	40
26	Organic Linkers Enable Tunable Transfer of Migrated Energy from Upconversion Nanoparticles. ACS Applied Materials & Dr. (1978) and St. (1978) and St. (1978) are supplied Materials & Dr. (1978) and St. (1978) are supplied Materials & Dr. (1978) and St. (1978) are supplied Materials & Dr. (1978) and St. (1978) are supplied Materials & Dr. (1978) are supplied Materials & Dr. (1978) and Dr. (1978) are supplied Materials & Dr. (1978) are supplied by the St. (1978) are supplied by the supplied Br. (1978) are supplied by the St. (1978)	8.0	9
27	Selfâ€Assembly of Perovskite CsPbBr 3 Quantum Dots Driven by a Photoâ€Induced Alkynyl Homocoupling Reaction. Angewandte Chemie, 2020, 132, 17360-17366.	2.0	11
28	Selfâ€Assembly of Perovskite CsPbBr ₃ Quantum Dots Driven by a Photoâ€Induced Alkynyl Homocoupling Reaction. Angewandte Chemie - International Edition, 2020, 59, 17207-17213.	13.8	19
29	Sequenceâ€Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies. Angewandte Chemie, 2020, 132, 8210-8214.	2.0	32
30	Transition metal dichalcogenide/multi-walled carbon nanotube-based fibers as flexible electrodes for electrocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 5131-5134.	4.1	28
31	Tailoring nanoparticles based on boron dipyrromethene for cancer imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1627.	6.1	11
32	Sequenceâ€Dependent DNA Functionalization of Upconversion Nanoparticles and Their Programmable Assemblies. Angewandte Chemie - International Edition, 2020, 59, 8133-8137.	13.8	52
33	Intrinsic defects in biomass-derived carbons facilitate electroreduction of CO2. Nano Research, 2020, 13, 729-735.	10.4	56
34	Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Lowâ€Dose Photodynamic Therapy. Angewandte Chemie, 2020, 132, 16248-16255.	2.0	26
35	Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Lowâ€Dose Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 16114-16121.	13.8	126
36	Ferrocene Functionalized Upconversion Nanoparticle Nanosystem with Efficient Near-Infrared-Light-Promoted Fenton-Like Reaction for Tumor Growth Suppression. Inorganic Chemistry, 2020, 59, 9177-9187.	4.0	23

3

#	Article	IF	Citations
37	Selective growth and upconversion photoluminescence of Y-based fluorides: from NaYF ₄ : Yb/Er to YF ₃ : Yb/Er crystals. Nanotechnology, 2020, 31, 505605.	2.6	14
38	Modulation of lanthanide luminescence <i>via</i> an electric field. Nanoscale, 2019, 11, 16562-16570.	5.6	10
39	Genetic Probe Enhanced MRI: Enhancing Prostateâ€Cancerâ€Specific MRI by Genetic Amplified Nanoparticle Tumor Homing (Adv. Mater. 30/2019). Advanced Materials, 2019, 31, 1970218.	21.0	6
40	Accelerating the startup of microbial fuel cells by facile microbial acclimation. Bioresource Technology Reports, 2019, 8, 100347.	2.7	16
41	Chemical Vapor Transport Reactions for Synthesizing Layered Materials and Their 2D Counterparts. Small, 2019, 15, e1804404.	10.0	52
42	Cuprous cluster as effective single-molecule metallaphotocatalyst in white light-driven C H arylation. Journal of Catalysis, 2019, 378, 270-276.	6.2	9
43	Biomimetic preparation of silicon quantum dots and their phytophysiology effect on cucumber seedlings. Journal of Materials Chemistry B, 2019, 7, 1107-1115.	5.8	40
44	Revisiting the Growth of Black Phosphorus in Sn-I Assisted Reactions. Frontiers in Chemistry, 2019, 7, 21.	3.6	41
45	Stirring revealed new functions of ethylenediamine and hydrazine in the morphology control of copper nanowires. Nanoscale, 2019, 11, 11902-11909.	5.6	8
46	Enhancing Prostateâ€Cancerâ€Specific MRI by Genetic Amplified Nanoparticle Tumor Homing. Advanced Materials, 2019, 31, e1900928.	21.0	16
47	Enhanced down-conversion luminescence properties of CaSc2O4: Eu3+ crystals. Journal of Luminescence, 2019, 214, 116526.	3.1	1
48	Ultrafast Cathodic Exfoliation of Few-Layer Black Phosphorus in Aqueous Solution. ACS Applied Nano Materials, 2019, 2, 3793-3801.	5.0	35
49	Plasmonâ€Enhanced Blue Upconversion Luminescence by Indium Nanocrystals. Advanced Functional Materials, 2019, 29, 1901242.	14.9	32
50	Physical Manipulation of Lanthanideâ€Activated Photoluminescence. Annalen Der Physik, 2019, 531, 1900026.	2.4	20
51	Biomimetic Chiral Photonic Crystals. Angewandte Chemie, 2019, 131, 7865-7869.	2.0	21
52	Biomimetic Chiral Photonic Crystals. Angewandte Chemie - International Edition, 2019, 58, 7783-7787.	13.8	113
53	Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles. Biomaterials, 2019, 201, 77-86.	11.4	86
54	Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae. Cell, 2019, 177, 243-255.e15.	28.9	206

#	Article	IF	Citations
55	Origin of strong and narrow localized surface plasmon resonance of copper nanocubes. Nano Research, 2019, 12, 63-68.	10.4	64
56	Packed anode derived from cocklebur fruit for improving long-term performance of microbial fuel cells. Science China Materials, 2019, 62, 645-652.	6.3	26
57	Visible-Light Bismuth Iron Molybdate Photocatalyst for Artificial Nitrogen Fixation. Journal of the Electrochemical Society, 2019, 166, H3091-H3096.	2.9	19
58	Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting. Nano Research, 2019, 12, 643-650.	10.4	73
59	Nearâ€Infraredâ€Light Activatable Nanoparticles for Deepâ€Tissueâ€Penetrating Wireless Optogenetics. Advanced Healthcare Materials, 2019, 8, e1801132.	7.6	94
60	Organic Phosphorescence: Enhancing Ultralong Organic Phosphorescence by Effective Ï€â€Type Halogen Bonding (Adv. Funct. Mater. 9/2018). Advanced Functional Materials, 2018, 28, 1870060.	14.9	2
61	Interconversion between KSc ₂ F ₇ :Yb/Er and K ₂ NaScF ₆ :Yb/Er nanocrystals: the role of chemistry. Dalton Transactions, 2018, 47, 4950-4958.	3.3	10
62	Er ³⁺ Sensitized Photon Upconversion Nanocrystals. Advanced Functional Materials, 2018, 28, 1800208.	14.9	108
63	Enhancing Ultralong Organic Phosphorescence by Effective Ï€â€₹ype Halogen Bonding. Advanced Functional Materials, 2018, 28, 1705045.	14.9	244
64	Inherently Eu ²⁺ /Eu ³⁺ Codoped Sc ₂ O ₃ Nanoparticles asÂHighâ€Performance Nanothermometers. Advanced Materials, 2018, 30, e1705256.	21.0	203
65	Microporous Luminescent Metal–Organic Framework for a Sensitive and Selective Fluorescence Sensing of Toxic Mycotoxin in Moldy Sugarcane. ACS Applied Materials & Interfaces, 2018, 10, 5618-5625.	8.0	121
66	A ferroceneaˆ©europium assembly showing phototriggered anticancer activity and fluorescent modality imaging. Dalton Transactions, 2018, 47, 1479-1487.	3.3	13
67	Spatially confined luminescence process in tip-modified heterogeneous-structured microrods for high-level anti-counterfeiting. Physical Chemistry Chemical Physics, 2018, 20, 9516-9522.	2.8	30
68	A new amphiphilic pillar[5]arene: synthesis and controllable self-assembly in water and application in white-light-emitting systems. Chemical Communications, 2018, 54, 13006-13009.	4.1	53
69	Hydrogen-bonded-assisted supramolecular microwires for pure violet lasers: benefits of preventing intermolecular π–π stacking and aggregation in single crystals. Materials Chemistry Frontiers, 2018, 2, 2307-2312.	5.9	17
70	Design for Brighter Photon Upconversion Emissions via Energy Level Overlap of Lanthanide Ions. ACS Nano, 2018, 12, 10992-10999.	14.6	56
71	Paving Metal–Organic Frameworks with Upconversion Nanoparticles via Self-Assembly. Journal of the American Chemical Society, 2018, 140, 15507-15515.	13.7	85
72	Near Infrared Boron Dipyrromethene Nanoparticles for Optotheranostics. Small Methods, 2018, 2, 1700370.	8.6	45

#	Article	IF	CITATIONS
73	A difunctional metal–organic framework with Lewis basic sites demonstrating turn-off sensing of Cu ²⁺ and sensitization of Ln ³⁺ . Journal of Materials Chemistry C, 2018, 6, 7874-7879.	5.5	24
74	Multiplexed Biomolecular Arrays Generated via Parallel Dip-Pen Nanolithography. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25121-25126.	8.0	12
75	Nearly Pure Red Color Upconversion Luminescence of Ln-Doped Sc ₂ O ₃ with Unexpected RE-MOFs Molecular Alloys as Precursor. Inorganic Chemistry, 2018, 57, 10511-10517.	4.0	8
76	Dual-Signal Luminescent Detection of Dopamine by a Single Type of Lanthanide-Doped Nanoparticles. ACS Sensors, 2018, 3, 1683-1689.	7.8	56
77	Erbium(<scp>iii</scp>)-based metal–organic frameworks with tunable upconversion emissions. Dalton Transactions, 2018, 47, 12868-12872.	3.3	30
78	Controllable supramolecular chain aggregation through nano-steric hindrance functionalization for multi-color larger-area electroluminescence. Journal of Materials Chemistry C, 2018, 6, 7018-7023.	5.5	9
79	Nanocomposites of carbon nanotubes and photon upconversion nanoparticles for enhanced optical limiting performance. Journal of Materials Chemistry C, 2018, 6, 7311-7316.	5.5	11
80	Solutionâ€Processable Nearâ€Infrared–Responsive Composite of Perovskite Nanowires and Photonâ€Upconversion Nanoparticles. Advanced Functional Materials, 2018, 28, 1801782.	14.9	40
81	Domino-like multi-emissions across red and near infrared from solid-state 2-/2,6-aryl substituted BODIPY dyes. Nature Communications, 2018, 9, 2688.	12.8	85
82	Synthesis and luminescent properties of lanthanide-doped ScVO 4 microcrystals. Journal of Rare Earths, 2017, 35, 28-33.	4.8	9
83	Fewâ€Layer Graphdiyne Nanosheets Applied for Multiplexed Realâ€Time DNA Detection. Advanced Materials, 2017, 29, 1606755.	21.0	198
84	Gold and Hairpin DNA Functionalization of Upconversion Nanocrystals for Imaging and In Vivo Drug Delivery. Advanced Materials, 2017, 29, 1700244.	21.0	186
85	Upconversion Nanoparticles: Emerging â‰^800 nm Excited Lanthanideâ€Doped Upconversion Nanoparticles (Small 6/2017). Small, 2017, 13, .	10.0	0
86	Insights into Li ⁺ -induced morphology evolution and upconversion luminescence enhancement of KSc ₂ F ₇ :Yb/Er nanocrystals. Journal of Materials Chemistry C, 2017, 5, 3503-3508.	5. 5	42
87	From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots. Small, 2017, 13, 1601001.	10.0	69
88	Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. Angewandte Chemie, 2017, 129, 5137-5142.	2.0	23
89	Graphene: From Graphite to Graphene Oxide and Graphene Oxide Quantum Dots (Small 18/2017). Small, 2017, 13, .	10.0	3
90	Confining Excitation Energy in Er ³⁺ â€Sensitized Upconversion Nanocrystals through Tm ³⁺ â€Mediated Transient Energy Trapping. Angewandte Chemie - International Edition, 2017, 56, 7605-7609.	13.8	259

#	Article	IF	Citations
91	Upconversion Modulation through Pulsed Laser Excitation for Anti-counterfeiting. Scientific Reports, 2017, 7, 1320.	3.3	84
92	Confining Excitation Energy in Er ³⁺ â€Sensitized Upconversion Nanocrystals through Tm ³⁺ â€Mediated Transient Energy Trapping. Angewandte Chemie, 2017, 129, 7713-7717.	2.0	56
93	Tumor-Targeted and Clearable Human Protein-Based MRI Nanoprobes. Nano Letters, 2017, 17, 4096-4100.	9.1	61
94	Sc ³⁺ -induced morphology, phase structure, and upconversion luminescence evolution of YF ₃ :Yb/Er nanocrystals. Journal of Materials Chemistry C, 2017, 5, 6450-6456.	5.5	26
95	Comprehensive studies of the Li ⁺ effect on NaYF ₄ :Yb/Er nanocrystals: morphology, structure, and upconversion luminescence. Dalton Transactions, 2017, 46, 8968-8974.	3.3	37
96	Scrolling up graphene oxide nanosheets assisted by self-assembled monolayers of alkanethiols. Nanoscale, 2017, 9, 9997-10001.	5.6	16
97	Gold Nanowire Chiral Ultrathin Films with Ultrastrong and Broadband Optical Activity. Angewandte Chemie - International Edition, 2017, 56, 5055-5060.	13.8	77
98	Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Research, 2017, 10, 1840-1846.	10.4	62
99	Nitrogen-enriched pseudographitic anode derived from silk cocoon with tunable flexibility for microbial fuel cells. Nano Energy, 2017, 32, 382-388.	16.0	98
100	Inner salt-shaped small molecular photosensitizer with extremely enhanced two-photon absorption for mitochondrial-targeted photodynamic therapy. Chemical Communications, 2017, 53, 1680-1683.	4.1	46
101	Emerging â‰^800 nm Excited Lanthanideâ€Doped Upconversion Nanoparticles. Small, 2017, 13, 1602843.	10.0	92
102	Insights into the growth mechanism of REF ₃ (RE = La–Lu, Y) nanocrystals: hexagonal and/or orthorhombic. Nanoscale, 2017, 9, 15974-15981.	5.6	13
103	Photoswitchable Near-Infrared-Emitting Boron-dipyrromethene (BODIPY) Nanoparticles. Particle and Particle Systems Characterization, 2017, 34, 1700223.	2.3	15
104	Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nature Communications, 2017, 8, 899.	12.8	290
105	Tuning hexagonal NaYbF ₄ nanocrystals down to sub-10 nm for enhanced photon upconversion. Nanoscale, 2017, 9, 13739-13746.	5.6	78
106	Expanding Antiâ€Stokes Shifting in Triplet–Triplet Annihilation Upconversion for Inâ€Vivo Anticancer Prodrug Activation. Angewandte Chemie, 2017, 129, 14592-14596.	2.0	30
107	Expanding Antiâ€Stokes Shifting in Triplet–Triplet Annihilation Upconversion for Inâ€Vivo Anticancer Prodrug Activation. Angewandte Chemie - International Edition, 2017, 56, 14400-14404.	13.8	119
108	Nanomedicine: Enhancing Photodynamic Therapy through Resonance Energy Transfer Constructed Nearâ€Infrared Photosensitized Nanoparticles (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	21.0	1

#	Article	IF	CITATIONS
109	Highly Waterâ€Stable Lanthanide–Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence. Advanced Materials, 2017, 29, 1701804.	21.0	106
110	Selective synthesis of LaF ₃ and NaLaF ₄ nanocrystals via lanthanide ion doping. Journal of Materials Chemistry C, 2017, 5, 9188-9193.	5 . 5	20
111	Hedgehogâ€Like Upconversion Crystals: Controlled Growth and Molecular Sensing at Singleâ€Particle Level. Advanced Materials, 2017, 29, 1702315.	21.0	38
112	Preparation of graphene-MoS2 hybrid aerogels as multifunctional sorbents for water remediation. Science China Materials, 2017, 60, 1102-1108.	6.3	27
113	Controlled Synthesis, Evolution Mechanisms, and Luminescent Properties of ScF _{<i>x</i>} :Ln (<i>x</i> = 2.76, 3) Nanocrystals. Chemistry of Materials, 2017, 29, 9758-9766.	6.7	22
114	Enhancing Photodynamic Therapy through Resonance Energy Transfer Constructed Nearâ€Infrared Photosensitized Nanoparticles. Advanced Materials, 2017, 29, 1604789.	21.0	154
115	Nanoscale "fluorescent stone― Luminescent Calcium Fluoride Nanoparticles as Theranostic Platforms. Theranostics, 2016, 6, 2380-2393.	10.0	41
116	Wideâ€Range Tunable Fluorescence Lifetime and Ultrabright Luminescence of Euâ€Grafted Plasmonic Core–Shell Nanoparticles for Multiplexing. Small, 2016, 12, 397-404.	10.0	39
117	From ScOOH to Sc ₂ O ₃ : Phase Control, Luminescent Properties, and Applications. Advanced Materials, 2016, 28, 6665-6671.	21.0	31
118	Weavable, Highâ€Performance, Solidâ€State Supercapacitors Based on Hybrid Fibers Made of Sandwiched Structure of MWCNT/rGO/MWCNT. Advanced Electronic Materials, 2016, 2, 1600102.	5.1	47
119	Unraveling Epitaxial Habits in the NaLnF ₄ System for Color Multiplexing at the Singleâ€Particle Level. Angewandte Chemie - International Edition, 2016, 55, 5718-5722.	13.8	83
120	Designing Upconversion Nanocrystals Capable of 745â€nm Sensitization and 803â€nm Emission for Deepâ€Tissue Imaging. Chemistry - A European Journal, 2016, 22, 10801-10807.	3.3	34
121	BODIPYâ€Based Nanomicelles as Nearâ€Infrared Fluorescent "Turnâ€On―Sensors for Biogenic Thiols. ChemNanoMat, 2016, 2, 396-399.	2.8	12
122	Unraveling Epitaxial Habits in the NaLnF ₄ System for Color Multiplexing at the Singleâ€Particle Level. Angewandte Chemie, 2016, 128, 5812-5816.	2.0	72
123	Illuminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials. ACS Nano, 2016, 10, 3881-3885.	14.6	71
124	Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 5920-5926.	10.0	65
125	Conversion of municipal solid waste incineration bottom ash to sorbent material: Effect of ash particle size. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68, 351-359.	5.3	14
126	Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy. Journal of the American Chemical Society, 2016, 138, 14586-14591.	13.7	275

#	Article	IF	CITATIONS
127	Conversion of municipal solid waste incineration bottom ash to sorbent material for pollutants removal from water. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 275-286.	5.3	23
128	Nonlinear spectral and lifetime management in upconversion nanoparticles by controlling energy distribution. Nanoscale, 2016, 8, 6666-6673.	5.6	65
129	Sensitive Water Probing through Nonlinear Photon Upconversion of Lanthanide-Doped Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 847-853.	8.0	84
130	Carbon: Carbonâ€Based Sorbents with Threeâ€Dimensional Architectures for Water Remediation (Small) Tj ETQq	0 0 0 rgBT	·/Overlock
131	Frontispiece: Improving the Performance of Microbial Fuel Cells through Anode Manipulation. ChemPlusChem, 2015, 80, n/a-n/a.	2.8	0
132	Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification. Nanomaterials, 2015, 5, 1-25.	4.1	72
133	Improving the Performance of Microbial Fuel Cells through Anode Manipulation. ChemPlusChem, 2015, 80, 1216-1225.	2.8	28
134	NaF-mediated controlled-synthesis of multicolor Na _x ScF _{3+x} :Yb/Er upconversion nanocrystals. Nanoscale, 2015, 7, 4048-4054.	5.6	33
135	Probing the nature of upconversion nanocrystals: instrumentation matters. Chemical Society Reviews, 2015, 44, 1479-1508.	38.1	176
136	Controlled Synthesis of Uniform Na _{<i>x</i>} ScF _{3+<i>x</i>} Nanopolyhedrons, Nanoplates, Nanorods, and Nanospheres Using Solvents. Crystal Growth and Design, 2015, 15, 2988-2993.	3.0	18
137	Carbonâ∈Based Sorbents with Threeâ€Dimensional Architectures for Water Remediation. Small, 2015, 11, 3319-3336.	10.0	166
138	A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling inÂvivo. Biomaterials, 2015, 54, 34-43.	11.4	75
139	Direct Aqueous-Phase Synthesis of Sub-10 nm "Luminous Pearls―with Enhanced <i>in Vivo</i> Renewable Near-Infrared Persistent Luminescence. Journal of the American Chemical Society, 2015, 137, 5304-5307.	13.7	357
140	Synthesis and luminescence properties of RE3+ (RE = Yb, Er, Tm, Eu, Tb)-doped Sc2O3 microcrystals. Journal of Alloys and Compounds, 2015, 653, 304-309.	5.5	20
141	Surfactant effect on and luminescence tuning of lanthanide-doped ScPO4·2H2O microparticles. Journal of Materials Chemistry C, 2015, 3, 12385-12389.	5.5	16
142	Switching of the triplet excited state of the C ₆₀ -dimethylaminostyryl BODIPY dyads/triads. Journal of Materials Chemistry C, 2015, 3, 538-550.	5 . 5	17
143	Nanostructured Titanate with Different Metal Ions on the Surface of Metallic Titanium: A Facile Approach for Regulation of rBMSCs Fate on Titanium Implants. Small, 2014, 10, 3169-3180.	10.0	49
144	Recent developments in lanthanide-based luminescent probes. Coordination Chemistry Reviews, 2014, 273-274, 201-212.	18.8	267

#	Article	IF	CITATIONS
145	Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO2 nanosheets. Energy and Environmental Science, 2014, 7, 973.	30.8	159
146	Switching of the Triplet Excited State of Styryl 2,6-Diiodo-Bodipy and Its Application in Acid-Activatable Singlet Oxygen Photosensitizing. Journal of Organic Chemistry, 2014, 79, 10240-10255.	3.2	38
147	Polypyrrole nanotube film for flexible thermoelectric application. Synthetic Metals, 2014, 196, 173-177.	3.9	165
148	Mobility of heavy metals and rare earth elements in incineration bottom ash through particle size reduction. Chemical Engineering Science, 2014, 118, 214-220.	3.8	31
149	Bi ₂ MoO ₆ Nanobelts for Crystal Facetâ€Enhanced Photocatalysis. Small, 2014, 10, 2791-2795.	10.0	145
150	Cross Relaxation Induced Pure Red Upconversion in Activator- and Sensitizer-Rich Lanthanide Nanoparticles. Chemistry of Materials, 2014, 26, 5183-5186.	6.7	195
151	Inorganic–Organic Hybrid Nanoprobe for NIRâ€Excited Imaging of Hydrogen Sulfide in Cell Cultures and Inflammation in a Mouse Model. Small, 2014, 10, 4874-4885.	10.0	89
152	Rhodamineâ€Modified Upconversion Nanophosphors for Ratiometric Detection of Hypochlorous Acid in Aqueous Solution and Living Cells. Small, 2014, 10, 3560-3567.	10.0	114
153	Efficient energy transfer from inserted CdTe quantum dots to YVO4:Eu3+ inverse opals: a novel strategy to improve and expand visible excitation of rare earth ions. Nanoscale, 2014, 6, 8075.	5.6	15
154	Nanoprobes: Inorganic-Organic Hybrid Nanoprobe for NIR-Excited Imaging of Hydrogen Sulfide in Cell Cultures and Inflammation in a Mouse Model (Small 23/2014). Small, 2014, 10, 4802-4802.	10.0	10
155	Orthorhombic KSc2F7:Yb/Er nanorods: controlled synthesis and strong red upconversion emission. Nanoscale, 2013, 5, 11928.	5.6	75
156	lodo-Bodipys as visible-light-absorbing dual-functional photoredox catalysts for preparation of highly functionalized organic compounds by formation of Câ€"C bonds via reductive and oxidative quenching catalytic mechanisms. RSC Advances, 2013, 3, 23377.	3.6	102
157	Enhanced deep-ultraviolet upconversion emission of Gd3+ sensitized by Yb3+ and Ho3+ in \hat{l}^2 -NaLuF4 microcrystals under 980 nm excitation. Journal of Materials Chemistry C, 2013, 1, 2485.	5.5	72
158	Au Nanorod Decoration on NaYF ₄ :Yb/Tm Nanoparticles for Enhanced Emission and Wavelength-Dependent Biomolecular Sensing. ACS Applied Materials & Dependent Biomolecular Sensing. ACS Applied Materials & Dependent Biomolecular Sensing.	8.0	98
159	C60-Bodipy dyad triplet photosensitizers as organic photocatalysts for photocatalytic tandem oxidation/[3+2] cycloaddition reactions to prepare pyrrolo[2,1-a]isoquinoline. Chemical Communications, 2013, 49, 3751.	4.1	97
160	Enhanced emission of NaYF4:Yb,Er/Tm nanoparticles by selective growth of Au and Ag nanoshells. RSC Advances, 2013, 3, 7718.	3.6	40
161	Bodipy Derivatives as Organic Triplet Photosensitizers for Aerobic Photoorganocatalytic Oxidative Coupling of Amines and Photooxidation of Dihydroxylnaphthalenes. Journal of Organic Chemistry, 2013, 78, 5627-5637.	3.2	175
162	Red-light excitable fluorescent platinum(ii) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. Journal of Materials Chemistry C, 2013, 1, 705-716.	5.5	61

#	Article	IF	CITATIONS
163	Water-soluble conjugated polyelectrolyte brush encapsulated rare-earth ion doped nanoparticles with dual-upconversion properties for multicolor cell imaging. Chemical Communications, 2013, 49, 9012.	4.1	30
164	Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chemical Communications, 2012, 48, 11656.	4.1	405
165	Transition metal complexes with strong absorption of visible light and long-lived triplet excited states: from molecular design to applications. RSC Advances, 2012, 2, 1712-1728.	3.6	176
166	Styryl Bodipy-C ₆₀ Dyads as Efficient Heavy-Atom-Free Organic Triplet Photosensitizers. Organic Letters, 2012, 14, 2594-2597.	4.6	171
167	One stone kills four birds: a novel diazaperinone 12H-pyrazino[2′,3′:3,4]pyrrolo[1,2-a]perimidin-12-one recognizes four different metal ions. Tetrahedron Letters, 2012, 53, 6044-6047.	1.4	10
168	Crystal Structure and Phototransistor Behavior of N-Substituted Heptacence. ACS Applied Materials & Lamp; Interfaces, 2012, 4, 1883-1886.	8.0	118
169	Effect of Magnetic Nanoparticles on the Morphology of Polystyrene- <i>b</i> -Poly(methyl) Tj ETQq1 1 0.784314	rgBT _{.1} /Ove	rlogk 10 Tf 5
170	Nanocomposites of Graphene Oxide and Upconversion Rareâ€Earth Nanocrystals with Superior Optical Limiting Performance. Small, 2012, 8, 2271-2276.	10.0	79
171	Mechanism Studies on the Superior Optical Limiting Observed in Graphene Oxide Covalently Functionalized with Upconversion NaYF ₄ :Yb ³⁺ /Er ³⁺ Nanoparticles. Small, 2012, 8, 2163-2168.	10.0	59
172	Inâ€Vitro and Inâ€Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 3125-3129.	13.8	428
173	Inside Back Cover: Inâ€Vitro and Inâ€Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles (Angew. Chem. Int. Ed. 13/2012). Angewandte Chemie - International Edition, 2012, 51, 3275-3275.	13.8	1
174	Lanthanide-Doped Na _{<i>x</i>} ScF _{3+<i>x</i>} Nanocrystals: Crystal Structure Evolution and Multicolor Tuning. Journal of the American Chemical Society, 2012, 134, 8340-8343.	13.7	315
175	Preparation, characterization, physical properties, and photoconducting behaviour of anthracene derivative nanowires. Nanoscale, 2011, 3, 4720.	5.6	46
176	A novel luminescent mesoporous silica/apatite composite for controlled drug release. Journal of Materials Chemistry, 2011, 21, 5505.	6.7	35
177	Synthesis, Characterization, Self-Assembly, and Physical Properties of 11-Methylbenzo[<i>d</i>)pyreno[4,5- <i>b</i>)furan. Organic Letters, 2011, 13, 3004-3007.	4.6	94
178	Water-Soluble Iridium(III)-Containing Conjugated Polyelectrolytes with Weakened Energy Transfer Properties for Multicolor Protein Sensing Applications. Macromolecules, 2011, 44, 8763-8770.	4.8	44
179	Assembly of single-walled carbon nanotubes on patterns of Au nanoparticles. Applied Surface Science, 2011, 258, 1519-1524.	6.1	6
180	Chemically Functionalized Surface Patterning. Small, 2011, 7, 2273-2289.	10.0	83

#	Article	IF	CITATIONS
181	Roomâ€Temperature Longâ€Lived ³ IL Excited State of Rhodamine in an <i>N</i> V(i> <i>N</i> Pt ^{II} Bis(acetylide) Complex with Intense Visibleâ€Light Absorption. European Journal of Inorganic Chemistry, 2011, 2011, 4527-4533.	2.0	57
182	Matrixâ€Assisted Dipâ€Pen Nanolithography and Polymer Pen Lithography. Small, 2010, 6, 1077-1081.	10.0	79
183	Assembly of Nanorods into Designer Superstructures: The Role of Templating, Capillary Forces, Adhesion, and Polymer Hydration. ACS Nano, 2010, 4, 259-266.	14.6	40
184	Nanolithography of Single-Layer Graphene Oxide Films by Atomic Force Microscopy. Langmuir, 2010, 26, 6164-6166.	3.5	68
185	Mesoporous SrF ₂ and SrF ₂ :Ln ³⁺ (Ln = Ce, Tb, Yb, Er) Hierarchical Microspheres: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. Journal of Physical Chemistry C, 2010, 114, 6928-6936.	3.1	64
186	Generation of Metal Photomasks by Dipâ€Pen Nanolithography. Small, 2009, 5, 1850-1853.	10.0	37
187	Kinetically Controlled, Shapeâ€Directed Assembly of Nanorods. Small, 2008, 4, 206-210.	10.0	38
188	Polyethylene Glycol as a Novel Resist and Sacrificial Material for Generating Positive and Negative Nanostructures. Small, 2008, 4, 920-924.	10.0	22
189	Rational Design and Synthesis of Catalytically Driven Nanorotors. Journal of the American Chemical Society, 2007, 129, 14870-14871.	13.7	135
190	Sub-5-nm Gaps Prepared by On-Wire Lithography: Correlating Gap Size with Electrical Transport. Small, 2007, 3, 86-90.	10.0	52
191	"Lens―Effect in Directed Assembly of Nanowires onGradientMolecular Patterns. Journal of Physical Chemistry B, 2006, 110, 10217-10219.	2.6	28
192	Selective Assembly and Alignment of Actin Filaments with Desired Polarity on Solid Substrates. Langmuir, 2006, 22, 8635-8638.	3.5	20
193	Dip-Pen Nanolithography of High-Melting-Temperature Molecules. Journal of Physical Chemistry B, 2006, 110, 20756-20758.	2.6	18
194	Directed-assembly of single-walled carbon nanotubes using self-assembled monolayer patterns comprising conjugated molecular wires. Nanotechnology, 2006, 17, 3569-3573.	2.6	21
195	"Sliding kinetics―of single-walled carbon nanotubes on self-assembled monolayer patterns: Beyond random adsorption. Journal of Chemical Physics, 2006, 124, 224707.	3.0	29
196	Sub-100â€nm, Centimeter-Scale, Parallel Dip-Pen Nanolithography. Small, 2005, 1, 940-945.	10.0	122
197	On-Wire Lithography. Science, 2005, 309, 113-115.	12.6	377
198	Highly Selective Directed Assembly of Functional Actomyosin on Au Surfaces. Langmuir, 2005, 21, 3213-3216.	3.5	30

Ling Huang

#	Article	IF	CITATION
199	Large-scale assembly of carbon nanotubes. Nature, 2003, 425, 36-37.	27.8	446
200	Chemical Reactions of 2,5-Dimercapto-1,3,4-thiadiazole (DMTD) with Metallic Copper, Silver, and Mercury. Journal of Physical Chemistry B, 2001, 105, 7984-7989.	2.6	33
201	The adsorption of 2,5-dimer-capto-1,3,4-thiadiazole (DMTD) on copper surface and its binding behavior. Science Bulletin, 2001, 46, 387-389.	1.7	12
202	The solvent trapping or co-adsorbing effect during the self-assembly monolayer studied by surface-enhanced Raman scattering. Vibrational Spectroscopy, 2001, 25, 1-5.	2.2	7
203	A simple method for measuring the SERS spectra of water-insoluble organic compounds. Vibrational Spectroscopy, 2001, 26, 15-22.	2.2	11