Christopher W. Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7776091/publications.pdf

Version: 2024-02-01

15 papers	1,100 citations	13 h-index	996975 15 g-index
19	19	19	1669
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Computational design of water-soluble α-helical barrels. Science, 2014, 346, 485-488.	12.6	306
2	De novo protein design: how do we expand into the universe of possible protein structures?. Current Opinion in Structural Biology, 2015, 33, 16-26.	5.7	150
3	Modular Design of Self-Assembling Peptide-Based Nanotubes. Journal of the American Chemical Society, 2015, 137, 10554-10562.	13.7	137
4	C <scp>CB</scp> uilder 2.0: Powerful and accessible coiledâ€coil modeling. Protein Science, 2018, 27, 103-111.	7.6	107
5	CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies. Bioinformatics, 2014, 30, 3029-3035.	4.1	103
6	ISAMBARD: an open-source computational environment for biomolecular analysis, modelling and design. Bioinformatics, 2017, 33, 3043-3050.	4.1	48
7	Maintaining and breaking symmetry in homomeric coiled-coil assemblies. Nature Communications, 2018, 9, 4132.	12.8	45
8	Peptide Assembly Directed and Quantified Using Megadalton DNA Nanostructures. ACS Nano, 2019, 13, 9927-9935.	14.6	45
9	Navigating the Structural Landscape of De Novo \hat{l}_{\pm} -Helical Bundles. Journal of the American Chemical Society, 2019, 141, 8787-8797.	13.7	42
10	BAlaS: fast, interactive and accessible computational alanine-scanning using BudeAlaScan. Bioinformatics, 2020, 36, 2917-2919.	4.1	39
11	Chimeric Streptavidins as Host Proteins for Artificial Metalloenzymes. ACS Catalysis, 2018, 8, 1476-1484.	11.2	33
12	De Novo Designed Peptide and Protein Hairpins Selfâ€Assemble into Sheets and Nanoparticles. Small, 2021, 17, e2100472.	10.0	18
13	Applying graph theory to protein structures: an Atlas of coiled coils. Bioinformatics, 2018, 34, 3316-3323.	4.1	17
14	DE-STRESS: a user-friendly web application for the evaluation of protein designs. Protein Engineering, Design and Selection, 2021, 34, .	2.1	4
15	Generation of Photocaged Nanobodies for Intracellular Applications in an Animal Using Genetic Code Expansion and Computationally Guided Protein Engineering**. ChemBioChem, 2022, 23, .	2.6	4