Junmin Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7775668/publications.pdf Version: 2024-02-01

Ιπνιμίνι Βάνι

#	Article	IF	CITATIONS
1	Ciliary transition zone proteins coordinate ciliary protein composition and ectosome shedding. Nature Communications, 2022, 13, .	12.8	16
2	IFT54 directly interacts with kinesinâ€ I I and IFT dynein to regulate anterograde intraflagellar transport. EMBO Journal, 2021, 40, e105781.	7.8	28
3	Identification of Regulators for Ciliary Disassembly by a Chemical Screen. ACS Chemical Biology, 2021, 16, 2665-2672.	3.4	0
4	Potassium channel KCN11 is required for maintaining cellular osmolarity during nitrogen starvation to control proper cell physiology and TAG accumulation in Chlamydomonas reinhardtii. Biotechnology for Biofuels, 2020, 13, 129.	6.2	6
5	Editorial: Dissecting the Intraflagellar Transport System in Physiology and Disease: Cilia-Related and -Unrelated Roles. Frontiers in Cell and Developmental Biology, 2020, 8, 615588.	3.7	1
6	Single-Cell Mass Spectrometry Analysis of Metabolites Facilitated by Cell Electro-Migration and Electroporation. Analytical Chemistry, 2020, 92, 10138-10144.	6.5	34
7	FLS2 is a CDK-like kinase that directly binds IFT70 and is required for proper ciliary disassembly in Chlamydomonas. PLoS Genetics, 2020, 16, e1008561.	3.5	13
8	Functional exploration of heterotrimeric kinesin-II in IFT and ciliary length control in Chlamydomonas. ELife, 2020, 9, .	6.0	11
9	Title is missing!. , 2020, 16, e1008561.		0
10	Title is missing!. , 2020, 16, e1008561.		0
11	Title is missing!. , 2020, 16, e1008561.		0
12	Title is missing!. , 2020, 16, e1008561.		0
13	Regulation of flagellar assembly and length in <i>Chlamydomonas</i> by LF4, a MAPKâ€related kinase. FASEB Journal, 2019, 33, 6431-6441.	0.5	22
14	Nourseothricin N-acetyl transferase (NAT), a new selectable marker for nuclear gene expression in Chlamydomonas. Plant Methods, 2019, 15, 140.	4.3	15
15	Chlamydomonas WDR92 in association with R2TP-like complex and multiple DNAAFs to regulate ciliary dynein preassembly. Journal of Molecular Cell Biology, 2019, 11, 770-780.	3.3	29
16	Ciliary Length Sensing Regulates IFT Entry via Changes in FLA8/KIF3B Phosphorylation to Control Ciliary Assembly. Current Biology, 2018, 28, 2429-2435.e3.	3.9	33
17	Calmodulin regulates a TRP channel (ADF1) and phospholipase C (PLC) to mediate elevation of cytosolic calcium during acidic stress that induces deflagellation in <i>Chlamydomonas</i> . FASEB Journal, 2018, 32, 3689-3699.	0.5	13
18	Noninvasive and Accurate Detection of Hereditary Hearing Loss Mutations with Buccal Swab Based on Droplet Digital PCR. Analytical Chemistry, 2018, 90, 8919-8926.	6.5	20

Junmin Pan

#	Article	IF	CITATIONS
19	IFT54 regulates IFT20 stability but is not essential for tubulin transport during ciliogenesis. Cellular and Molecular Life Sciences, 2017, 74, 3425-3437.	5.4	34
20	Comparative Proteomics Reveals Timely Transport into Cilia of Regulators or Effectors as a Mechanism Underlying Ciliary Disassembly. Journal of Proteome Research, 2017, 16, 2410-2418.	3.7	12
21	Chlamydomonas: Cilia and Ciliopathies. Microbiology Monographs, 2017, , 73-97.	0.6	0
22	Functional exploration of the IFT-A complex in intraflagellar transport and ciliogenesis. PLoS Genetics, 2017, 13, e1006627.	3.5	56
23	IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. ELife, 2017, 6, .	6.0	90
24	An organelle K+ channel is required for osmoregulation in Chlamydomonas reinhardtii. Journal of Cell Science, 2016, 129, 3008-14.	2.0	8
25	A NIMA-related kinase, CNK4, regulates ciliary stability and length. Molecular Biology of the Cell, 2016, 27, 838-847.	2.1	30
26	Mechanism of ciliary disassembly. Cellular and Molecular Life Sciences, 2016, 73, 1787-1802.	5.4	89
27	Microtubule-Depolymerizing Kinesins in the Regulation of Assembly, Disassembly, and Length of Cilia and Flagella. International Review of Cell and Molecular Biology, 2015, 317, 241-265.	3.2	21
28	Cilia Disassembly with Two Distinct Phases of Regulation. Cell Reports, 2015, 10, 1803-1810.	6.4	38
29	Organelle Size: A Cilium Length Signal Regulates IFT Cargo Loading. Current Biology, 2014, 24, R75-R78.	3.9	9
30	CYLD mediates ciliogenesis in multiple organs by deubiquitinating Cep70 and inactivating HDAC6. Cell Research, 2014, 24, 1342-1353.	12.0	87
31	FLA8/KIF3B Phosphorylation Regulates Kinesin-II Interaction with IFT-B to Control IFT Entry and Turnaround. Developmental Cell, 2014, 30, 585-597.	7.0	102
32	The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cellular and Molecular Life Sciences, 2013, 70, 1849-1874.	5.4	70
33	Fluorescent measurement of lipid content in the model organism Chlamydomonas reinhardtii. Journal of Applied Phycology, 2013, 25, 1633-1641.	2.8	23
34	The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella. Journal of Cell Science, 2013, 127, 281-7.	2.0	30
35	Flagellar regeneration requires cytoplasmic microtubule depolymerization and kinesin-13. Journal of Cell Science, 2013, 126, 1531-40.	2.0	61
36	Activation loop phosphorylation of a protein kinase is a molecular marker of organelle size that dynamically reports flagellar length. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12337-12342.	7.1	52

Junmin Pan

#	Article	IF	CITATIONS
37	Regulation of Flagellar Biogenesis by a Calcium Dependent Protein Kinase in Chlamydomonas reinhardtii. PLoS ONE, 2013, 8, e69902.	2.5	42
38	Protein Phosphorylation Is a Key Event of Flagellar Disassembly Revealed by Analysis of Flagellar Phosphoproteins during Flagellar Shortening in <i>Chlamydomonas</i> . Journal of Proteome Research, 2011, 10, 3830-3839.	3.7	27
39	The Phosphorylation State of an Aurora-Like Kinase Marks the Length of Growing Flagella in Chlamydomonas. Current Biology, 2011, 21, 586-591.	3.9	48
40	A ONE‧HOT SOLUTION TO BACTERIAL AND FUNGAL CONTAMINATION IN THE GREEN ALGA <i>CHLAMYDOMONAS REINHARDTII</i> CULTURE BY USING AN ANTIBIOTIC COCKTAIL ¹ . Journal of Phycology, 2010, 46, 1356-1358.	2.3	34
41	A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in <i>Chlamydomonas</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4713-4718.	7.1	127
42	Regulation of Cilia assembly, Disassembly, and Length by Protein Phosphorylation. Methods in Cell Biology, 2009, 94, 333-346.	1.1	41
43	Chlamydomonas (Chlorophyceae) colony PCR. Protoplasma, 2009, 235, 107-110.	2.1	81
44	Cilia and ciliopathies: From Chlamydomonas and beyond. Science in China Series C: Life Sciences, 2008, 51, 479-486.	1.3	28
45	The Primary Cilium: Keeper of the Key to Cell Division. Cell, 2007, 129, 1255-1257.	28.9	147
46	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
47	Cilium-generated signaling and cilia-related disorders. Laboratory Investigation, 2005, 85, 452-463.	3.7	215
48	Chlamydomonas Shortens Its Flagella by Activating Axonemal Disassembly, Stimulating IFT Particle Trafficking, and Blocking Anterograde Cargo Loading. Developmental Cell, 2005, 9, 431-438.	7.0	96
49	An Aurora Kinase Is Essential for Flagellar Disassembly in Chlamydomonas. Developmental Cell, 2004, 6, 445-451.	7.0	150
50	Kinesin II and regulated intraflagellar transport ofChlamydomonasaurora protein kinase. Journal of Cell Science, 2003, 116, 2179-2186.	2.0	30
51	Kinesin-II Is Required for Flagellar Sensory Transduction during Fertilization inChlamydomonas. Molecular Biology of the Cell, 2002, 13, 1417-1426.	2.1	69
52	Regulated Targeting of a Protein Kinase into an Intact Flagellum. Journal of Biological Chemistry, 2000, 275, 24106-24114.	3.4	42
53	Cilia are not created equal—restriction of IFT on microtubule tracks for cilia diversification. BioEssays, 0, , 2200082.	2.5	0