Junmin Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7775668/publications.pdf

Version: 2024-02-01

		201674	214800
53	4,586 citations	27	47
papers	citations	h-index	g-index
60	60	60	5 410
60	60	60	5419
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
2	Cilium-generated signaling and cilia-related disorders. Laboratory Investigation, 2005, 85, 452-463.	3.7	215
3	An Aurora Kinase Is Essential for Flagellar Disassembly in Chlamydomonas. Developmental Cell, 2004, 6, 445-451.	7.0	150
4	The Primary Cilium: Keeper of the Key to Cell Division. Cell, 2007, 129, 1255-1257.	28.9	147
5	A microtubule depolymerizing kinesin functions during both flagellar disassembly and flagellar assembly in <i>Chlamydomonas</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4713-4718.	7.1	127
6	FLA8/KIF3B Phosphorylation Regulates Kinesin-II Interaction with IFT-B to Control IFT Entry and Turnaround. Developmental Cell, 2014, 30, 585-597.	7.0	102
7	Chlamydomonas Shortens Its Flagella by Activating Axonemal Disassembly, Stimulating IFT Particle Trafficking, and Blocking Anterograde Cargo Loading. Developmental Cell, 2005, 9, 431-438.	7.0	96
8	IFT trains in different stages of assembly queue at the ciliary base for consecutive release into the cilium. ELife, $2017, 6, .$	6.0	90
9	Mechanism of ciliary disassembly. Cellular and Molecular Life Sciences, 2016, 73, 1787-1802.	5 . 4	89
10	CYLD mediates ciliogenesis in multiple organs by deubiquitinating Cep70 and inactivating HDAC6. Cell Research, 2014, 24, 1342-1353.	12.0	87
11	Chlamydomonas (Chlorophyceae) colony PCR. Protoplasma, 2009, 235, 107-110.	2.1	81
12	The role of the cilium in normal and abnormal cell cycles: emphasis on renal cystic pathologies. Cellular and Molecular Life Sciences, 2013, 70, 1849-1874.	5 . 4	70
13	Kinesin-II Is Required for Flagellar Sensory Transduction during Fertilization inChlamydomonas. Molecular Biology of the Cell, 2002, 13, 1417-1426.	2.1	69
14	Flagellar regeneration requires cytoplasmic microtubule depolymerization and kinesin-13. Journal of Cell Science, 2013, 126, 1531-40.	2.0	61
15	Functional exploration of the IFT-A complex in intraflagellar transport and ciliogenesis. PLoS Genetics, 2017, 13, e1006627.	3.5	56
16	Activation loop phosphorylation of a protein kinase is a molecular marker of organelle size that dynamically reports flagellar length. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12337-12342.	7.1	52
17	The Phosphorylation State of an Aurora-Like Kinase Marks the Length of Growing Flagella in Chlamydomonas. Current Biology, 2011, 21, 586-591.	3.9	48
18	Regulated Targeting of a Protein Kinase into an Intact Flagellum. Journal of Biological Chemistry, 2000, 275, 24106-24114.	3.4	42

#	Article	IF	Citations
19	Regulation of Flagellar Biogenesis by a Calcium Dependent Protein Kinase in Chlamydomonas reinhardtii. PLoS ONE, 2013, 8, e69902.	2.5	42
20	Regulation of Cilia assembly, Disassembly, and Length by Protein Phosphorylation. Methods in Cell Biology, 2009, 94, 333-346.	1.1	41
21	Cilia Disassembly with Two Distinct Phases of Regulation. Cell Reports, 2015, 10, 1803-1810.	6.4	38
22	A ONEâ€SHOT SOLUTION TO BACTERIAL AND FUNGAL CONTAMINATION IN THE GREEN ALGA <i>CHLAMYDOMONAS REINHARDTII</i> CULTURE BY USING AN ANTIBIOTIC COCKTAIL Sup>1 Journal of Phycology, 2010, 46, 1356-1358.	2.3	34
23	IFT54 regulates IFT20 stability but is not essential for tubulin transport during ciliogenesis. Cellular and Molecular Life Sciences, 2017, 74, 3425-3437.	5.4	34
24	Single-Cell Mass Spectrometry Analysis of Metabolites Facilitated by Cell Electro-Migration and Electroporation. Analytical Chemistry, 2020, 92, 10138-10144.	6.5	34
25	Ciliary Length Sensing Regulates IFT Entry via Changes in FLA8/KIF3B Phosphorylation to Control Ciliary Assembly. Current Biology, 2018, 28, 2429-2435.e3.	3.9	33
26	Kinesin II and regulated intraflagellar transport of Chlamydomonasaurora protein kinase. Journal of Cell Science, 2003, 116, 2179-2186.	2.0	30
27	The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella. Journal of Cell Science, 2013, 127, 281-7.	2.0	30
28	A NIMA-related kinase, CNK4, regulates ciliary stability and length. Molecular Biology of the Cell, 2016, 27, 838-847.	2.1	30
29	Chlamydomonas WDR92 in association with R2TP-like complex and multiple DNAAFs to regulate ciliary dynein preassembly. Journal of Molecular Cell Biology, 2019, 11, 770-780.	3.3	29
30	Cilia and ciliopathies: From Chlamydomonas and beyond. Science in China Series C: Life Sciences, 2008, 51, 479-486.	1.3	28
31	IFT54 directly interacts with kinesinâ€II and IFT dynein to regulate anterograde intraflagellar transport. EMBO Journal, 2021, 40, e105781.	7.8	28
32	Protein Phosphorylation Is a Key Event of Flagellar Disassembly Revealed by Analysis of Flagellar Phosphoproteins during Flagellar Shortening in <i>Chlamydomonas</i> . Journal of Proteome Research, 2011, 10, 3830-3839.	3.7	27
33	Fluorescent measurement of lipid content in the model organism Chlamydomonas reinhardtii. Journal of Applied Phycology, 2013, 25, 1633-1641.	2.8	23
34	Regulation of flagellar assembly and length in <i>Chlamydomonas</i> by LF4, a MAPKâ€related kinase. FASEB Journal, 2019, 33, 6431-6441.	0.5	22
35	Microtubule-Depolymerizing Kinesins in the Regulation of Assembly, Disassembly, and Length of Cilia and Flagella. International Review of Cell and Molecular Biology, 2015, 317, 241-265.	3.2	21
36	Noninvasive and Accurate Detection of Hereditary Hearing Loss Mutations with Buccal Swab Based on Droplet Digital PCR. Analytical Chemistry, 2018, 90, 8919-8926.	6.5	20

#	Article	lF	Citations
37	Ciliary transition zone proteins coordinate ciliary protein composition and ectosome shedding. Nature Communications, 2022, 13, .	12.8	16
38	Nourseothricin N-acetyl transferase (NAT), a new selectable marker for nuclear gene expression in Chlamydomonas. Plant Methods, 2019, 15, 140.	4.3	15
39	Calmodulin regulates a TRP channel (ADF1) and phospholipase C (PLC) to mediate elevation of cytosolic calcium during acidic stress that induces deflagellation in <i>Chlamydomonas</i> Journal, 2018, 32, 3689-3699.	0.5	13
40	FLS2 is a CDK-like kinase that directly binds IFT70 and is required for proper ciliary disassembly in Chlamydomonas. PLoS Genetics, 2020, 16, e1008561.	3.5	13
41	Comparative Proteomics Reveals Timely Transport into Cilia of Regulators or Effectors as a Mechanism Underlying Ciliary Disassembly. Journal of Proteome Research, 2017, 16, 2410-2418.	3.7	12
42	Functional exploration of heterotrimeric kinesin-II in IFT and ciliary length control in Chlamydomonas. ELife, 2020, 9, .	6.0	11
43	Organelle Size: A Cilium Length Signal Regulates IFT Cargo Loading. Current Biology, 2014, 24, R75-R78.	3.9	9
44	An organelle K+ channel is required for osmoregulation in Chlamydomonas reinhardtii. Journal of Cell Science, 2016, 129, 3008-14.	2.0	8
45	Potassium channel KCN11 is required for maintaining cellular osmolarity during nitrogen starvation to control proper cell physiology and TAG accumulation in Chlamydomonas reinhardtii. Biotechnology for Biofuels, 2020, 13, 129.	6.2	6
46	Editorial: Dissecting the Intraflagellar Transport System in Physiology and Disease: Cilia-Related and -Unrelated Roles. Frontiers in Cell and Developmental Biology, 2020, 8, 615588.	3.7	1
47	Chlamydomonas: Cilia and Ciliopathies. Microbiology Monographs, 2017, , 73-97.	0.6	0
48	Identification of Regulators for Ciliary Disassembly by a Chemical Screen. ACS Chemical Biology, 2021, 16, 2665-2672.	3.4	0
49	Title is missing!. , 2020, 16, e1008561.		0
50	Title is missing!. , 2020, 16, e1008561.		0
51	Title is missing!. , 2020, 16, e1008561.		0
52	Title is missing!. , 2020, 16, e1008561.		0
53	Cilia are not created equalâ€"restriction of IFT on microtubule tracks for cilia diversification. BioEssays, 0, , 2200082.	2.5	0