Jennifer C Mortimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/777446/publications.pdf

Version: 2024-02-01

85 papers 5,152 citations

34 h-index 95266 68 g-index

95 all docs 95
docs citations

95 times ranked 6208 citing authors

#	Article	lF	Citations
1	SpaceHort: redesigning plants to support space exploration and on-earth sustainability. Current Opinion in Biotechnology, 2022, 73, 246-252.	6.6	21
2	Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. Journal of Experimental Botany, 2022, 73, 646-664.	4.8	21
3	The genome of the rice variety LTH provides insight into its universal susceptibility mechanism to worldwide rice blast fungal strains. Computational and Structural Biotechnology Journal, 2022, 20, 1012-1026.	4.1	16
4	Reimagining Lignin for the Biorefinery. Plant and Cell Physiology, 2022, , .	3.1	0
5	Transcriptional and metabolic changes associated with internode development and reduced cinnamyl alcohol dehydrogenase activity in sorghum. Journal of Experimental Botany, 2022, 73, 6307-6333.	4.8	6
6	The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like mannan when expressed in yeast and Arabidopsis. Plant Science, 2021, 302, 110693.	3.6	8
7	Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation. Journal of Biological Chemistry, 2021, 296, 100602.	3.4	24
8	Are Methanol-Derived Foliar Methyl Acetate Emissions a Tracer of Acetate-Mediated Drought Survival in Plants?. Plants, 2021, 10, 411.	3.5	3
9	Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nature Nanotechnology, 2021, 16, 243-250.	31.5	119
10	The $\langle i \rangle$ Arabidopsis thaliana $\langle i \rangle$ nucleotide sugar transporter GONST2 is a functional homolog of GONST1. Plant Direct, 2021, 5, e00309.	1.9	7
11	Reprogramming sphingolipid glycosylation is required for endosymbiont persistence in Medicago truncatula. Current Biology, 2021, 31, 2374-2385.e4.	3.9	16
12	Plant single-cell solutions for energy and the environment. Communications Biology, 2021, 4, 962.	4.4	23
13	High Temperature Acclimation of Leaf Gas Exchange, Photochemistry, and Metabolomic Profiles in <i>Populus trichocarpa</i> . ACS Earth and Space Chemistry, 2021, 5, 1813-1828.	2.7	7
14	Editorial Feature: Meet the PCP Editor—Jenny Mortimer. Plant and Cell Physiology, 2021, 62, 747-748.	3.1	0
15	Solid-State Nuclear Magnetic Resonance as a Tool to Probe the Impact of Mechanical Preprocessing on the Structure and Arrangement of Plant Cell Wall Polymers. Frontiers in Plant Science, 2021, 12, 766506.	3.6	3
16	The Mechanics and Biology of Plant Cell Walls: Resilience and Sustainability for Our Future Society. Plant and Cell Physiology, 2021, 62, 1787-1790.	3.1	1
17	A grass-specific cellulose–xylan interaction dominates in sorghum secondary cell walls. Nature Communications, 2020, 11, 6081.	12.8	59
18	Iron Supplementation Eliminates Antagonistic Interactions Between Root-Associated Bacteria. Frontiers in Microbiology, 2020, 11, 1742.	3.5	9

#	Article	IF	CITATIONS
19	No evidence for transient transformation via pollen magnetofection in several monocot species. Nature Plants, 2020, 6, 1323-1324.	9.3	34
20	Supply Cost and Life-Cycle Greenhouse Gas Footprint of Dry and Ensiled Biomass Sorghum for Biofuel Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 15855-15864.	6.7	20
21	Variation in sugarcane biomass composition and enzymatic saccharification of leaves, internodes and roots. Biotechnology for Biofuels, 2020, 13, 201.	6.2	11
22	Cell wall O-acetyl and methyl esterification patterns of leaves reflected in atmospheric emission signatures of acetic acid and methanol. PLoS ONE, 2020, 15, e0227591.	2.5	8
23	Unlocking the architecture of native plant cell walls via solid-state nuclear magnetic resonance. Methods in Cell Biology, 2020, 160, 121-143.	1.1	13
24	Do Cell Wall Esters Facilitate Forest Response to Climate?. Trends in Plant Science, 2020, 25, 729-732.	8.8	5
25	Agrobacterium-mediated transient transformation of sorghum leaves for accelerating functional genomics and genome editing studies. BMC Research Notes, 2020, 13, 116.	1.4	23
26	Synthesis and Function of Complex Sphingolipid Glycosylation. Trends in Plant Science, 2020, 25, 522-524.	8.8	16
27	Accumulation of high-value bioproducts <i>in planta</i> can improve the economics of advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8639-8648.	7.1	57
28	Impact of abiotic stress on the regulation of cell wall biosynthesis in <i>Populus trichocarpa</i> . Plant Biotechnology, 2020, 37, 273-283.	1.0	27
29	Identifying transcription factors that reduce wood recalcitrance and improve enzymatic degradation of xylem cell wall in Populus. Scientific Reports, 2020, 10, 22043.	3.3	9
30	Title is missing!. , 2020, 15, e0227591.		0
31	Title is missing!. , 2020, 15, e0227591.		0
32	Title is missing!. , 2020, 15, e0227591.		0
33	Title is missing!. , 2020, 15, e0227591.		0
34	Xyloglucan endotransglucosylase-hydrolase30 negatively affects salt tolerance in Arabidopsis. Journal of Experimental Botany, 2019, 70, 5495-5506.	4.8	38
35	Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism. Current Biology, 2019, 29, 3041-3052.e4.	3.9	109
36	Rhizobacteria Mediate the Phytotoxicity of a Range of Biorefineryâ€Relevant Compounds. Environmental Toxicology and Chemistry, 2019, 38, 1911-1922.	4.3	7

#	Article	IF	CITATIONS
37	Production of clovamide and its analogues inSaccharomyces cerevisiaeandLactococcus lactis. Letters in Applied Microbiology, 2019, 69, 181-189.	2.2	11
38	Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading. Nature Plants, 2019, 5, 604-615.	9.3	65
39	A screening method to identify efficient sgRNAs in Arabidopsis, used in conjunction with cell-specific lignin reduction. Biotechnology for Biofuels, 2019, 12, 130.	6.2	39
40	Approaches for More Efficient Biological Conversion of Lignocellulosic Feedstocks to Biofuels and Bioproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 9062-9079.	6.7	89
41	Two members of the <scp>DUF</scp> 579 family are responsible for arabinogalactan methylation in Arabidopsis. Plant Direct, 2019, 3, e00117.	1.9	23
42	Plant synthetic biology could drive a revolution in biofuels and medicine. Experimental Biology and Medicine, 2019, 244, 323-331.	2.4	41
43	Complete Genome Sequence of <i>Agrobacterium</i> sp. Strain 33MFTa1.1, Isolated from <i>Thlaspi arvense</i> Roots. Microbiology Resource Announcements, 2019, 8, .	0.6	1
44	Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides. Plant Journal, 2018, 94, 340-351.	5.7	27
45	The Three Members of the Arabidopsis Glycosyltransferase Family 92 are Functional β-1,4-Galactan Synthases. Plant and Cell Physiology, 2018, 59, 2624-2636.	3.1	35
46	Suppression of Arabidopsis <scp>GGLT</scp> 1 affects growth by reducing the Lâ€galactose content and borate crossâ€linking of rhamnogalacturonanâ€ <scp>II</scp> . Plant Journal, 2018, 96, 1036-1050.	5.7	33
47	Overexpression of a rice BAHD acyltransferase gene in switchgrass (Panicum virgatum L.) enhances saccharification. BMC Biotechnology, 2018, 18, 54.	3.3	38
48	GLUCOSAMINE INOSITOLPHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) Is a GlcNAc-Containing Glycosylinositol Phosphorylceramide Glycosyltransferase. Plant Physiology, 2018, 177, 938-952.	4.8	35
49	A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis. Frontiers in Plant Science, 2018, 9, 384.	3.6	26
50	Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants. ACS Synthetic Biology, 2017, 6, 806-816.	3.8	15
51	Structural Analysis of Cell Wall Polysaccharides Using PACE. Methods in Molecular Biology, 2017, 1544, 223-231.	0.9	5
52	Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science, 2017, 358, 1431-1434.	12.6	167
53	Structural Characterization of Mannan Cell Wall Polysaccharides in Plants Using PACE. Journal of Visualized Experiments, 2017, , .	0.3	3
54	Enrichment of the Plant Cytosolic Fraction. Methods in Molecular Biology, 2017, 1511, 213-232.	0.9	0

#	Article	lF	CITATIONS
55	Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis. Plant Journal, 2017, 89, 278-290.	5 . 7	43
56	Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility. Frontiers in Bioengineering and Biotechnology, 2016, 4, 58.	4.1	8
57	Loss of Inositol Phosphorylceramide Sphingolipid Mannosylation Induces Plant Immune Responses and Reduces Cellulose Content in Arabidopsis. Plant Cell, 2016, 28, 2991-3004.	6.6	71
58	Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nature Communications, 2016, 7, 13902.	12.8	287
59	Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nature Communications, 2016, 7, 11656.	12.8	110
60	An unusual xylan in Arabidopsis primary cell walls is synthesised by <scp>GUX</scp> 3, <scp>IRX</scp> 9L, <scp>IRX</scp> 10L and <scp>IRX</scp> 14. Plant Journal, 2015, 83, 413-426.	5.7	77
61	KONJAC1 and 2 Are Key Factors for GDP-Mannose Generation and Affect l-Ascorbic Acid and Glucomannan Biosynthesis in Arabidopsis. Plant Cell, 2015, 27, 3397-3409.	6.6	48
62	Glycan complexity dictates microbial resource allocation in the large intestine. Nature Communications, 2015, 6, 7481.	12.8	328
63	Probing the Molecular Architecture of <i>Arabidopsis thaliana</i> Secondary Cell Walls Using Two- and Three-Dimensional ¹³ C Solid State Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2015, 54, 2335-2345.	2.5	69
64	Evidence That GH115 \hat{l}_{\pm} -Glucuronidase Activity, Which Is Required to Degrade Plant Biomass, Is Dependent on Conformational Flexibility. Journal of Biological Chemistry, 2014, 289, 53-64.	3.4	63
65	The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11563-11568.	7.1	113
66	Annexin 1 regulates the <scp>H</scp> ₂ <scp>O</scp> ₂ â€induced calcium signature in <i><scp>A</scp>rabidopsis thaliana</i> roots. Plant Journal, 2014, 77, 136-145.	5.7	109
67	Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnology for Biofuels, 2013, 6, 46.	6.2	251
68	Secondary cell wall characterization in a BY-2 inductive system. Plant Cell, Tissue and Organ Culture, 2013, 115, 223-232.	2.3	11
69	Identification of an additional protein involved in mannan biosynthesis. Plant Journal, 2013, 73, 105-117.	5.7	45
70	Development and application of a high throughput carbohydrate profiling technique for analyzing plant cell wall polysaccharides and carbohydrate active enzymes. Biotechnology for Biofuels, 2013, 6, 94.	6.2	36
71	Abnormal Glycosphingolipid Mannosylation Triggers Salicylic Acid–Mediated Responses in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2013, 25, 1881-1894.	6.6	92
72	<scp>GUX</scp> 1 and <scp>GUX</scp> 2 glucuronyltransferases decorate distinct domains of glucuronoxylan with different substitution patterns. Plant Journal, 2013, 74, 423-434.	5.7	169

#	Article	IF	CITATIONS
73	Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 989-993.	7.1	263
74	<i>Arabidopsis</i> Annexin1 Mediates the Radical-Activated Plasma Membrane Ca ²⁺ - and K ⁺ -Permeable Conductance in Root Cells. Plant Cell, 2012, 24, 1522-1533.	6.6	173
75	Absence of branches from xylan in Arabidopsis <i>gux</i> mutants reveals potential for simplification of lignocellulosic biomass. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17409-17414.	7.1	283
76	VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 Effectively Induce Transdifferentiation into Xylem Vessel Elements under Control of an Induction System A. Plant Physiology, 2010, 153, 906-914.	4.8	250
77	Heme-independent soluble and membrane-associated peroxidase activity of a <i>Zea mays</i> annexin preparation. Plant Signaling and Behavior, 2009, 4, 428-430.	2.4	25
78	Salt stress signalling involves ATP release and Arabidopsis annexin 1. Comparative Biochemistry and Physiology Part A, Molecular & Description (1988) 2009, 153, S193-S194.	1.8	3
79	Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca ²⁺ channels. Plant Journal, 2009, 58, 903-913.	5.7	191
80	Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant Journal, 2009, 60, 527-538.	5.7	180
81	<i>Zea mays</i> Annexins Modulate Cytosolic Free Ca2+ and Generate a Ca2+-Permeable Conductance. Plant Cell, 2009, 21, 479-493.	6.6	145
82	NADPH oxidase involvement in cellular integrity. Planta, 2008, 227, 1415-1418.	3.2	32
83	Oligosaccharide relative quantitation using isotope tagging and normalâ€phase liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 2723-2730.	1.5	45
84	Voltage, reactive oxygen species and the influx of calcium. Plant Signaling and Behavior, 2008, 3, 698-699.	2.4	9
85	Annexins: multifunctional components of growth and adaptation. Journal of Experimental Botany, 2008, 59, 533-544.	4.8	231