David R Snead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7774308/publications.pdf Version: 2024-02-01

DAVID R SNEAD

#	Article	IF	CITATIONS
1	On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science, 2016, 352, 61-67.	12.6	751
2	A Threeâ€Minute Synthesis and Purification of Ibuprofen: Pushing the Limits of Continuousâ€Flow Processing. Angewandte Chemie - International Edition, 2015, 54, 983-987.	13.8	176
3	End-to-end continuous flow synthesis and purification of diphenhydramine hydrochloride featuring atom economy, in-line separation, and flow of molten ammonium salts. Chemical Science, 2013, 4, 2822.	7.4	94
4	Recent Developments of Chiral Diaminocarbene-Metal Complexes for Asymmetric Catalysis. Current Organic Chemistry, 2008, 12, 1370-1387.	1.6	63
5	Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. Journal of Flow Chemistry, 2020, 10, 73-92.	1.9	59
6	Bis(2-alkylpyrrolidin-1-yl)methylidenes as Chiral Acyclic Diaminocarbene Ligands. Organometallics, 2010, 29, 1729-1739.	2.3	46
7	Continuous-flow synthesis and purification of atropine with sequential in-line separations of structurally similar impurities. Journal of Flow Chemistry, 2015, 5, 133-138.	1.9	46
8	A concise route to MK-4482 (EIDD-2801) from cytidine. Chemical Communications, 2020, 56, 13363-13364.	4.1	39
9	A New Route to Acyclic Diaminocarbenes via Lithiumâ^'Halogen Exchange. Organic Letters, 2009, 11, 3274-3277.	4.6	37
10	Progress Toward a Large-Scale Synthesis of Molnupiravir (MK-4482, EIDD-2801) from Cytidine. ACS Omega, 2021, 6, 10396-10402.	3.5	35
11	In situ generation of novel acyclic diaminocarbene–copper complex. Chemical Communications, 2009, , 2475.	4.1	29
12	A High‥ielding Synthesis of EIDDâ€⊋801 from Uridine**. European Journal of Organic Chemistry, 2020, 2020, 6736-6739.	2.4	29
13	Expanding Access to Remdesivir via an Improved Pyrrolotriazine Synthesis: Supply Centered Synthesis. Organic Letters, 2020, 22, 7656-7661.	4.6	28
14	Bulky Acyclic Aminooxycarbene Ligands. Organometallics, 2011, 30, 5725-5730.	2.3	26
15	Toward a Practical, Two-Step Process for Molnupiravir: Direct Hydroxamination of Cytidine Followed by Selective Esterification. Organic Process Research and Development, 2021, 25, 1822-1830.	2.7	26
16	A Concise Route to MK-4482 (EIDD-2801) from Cytidine: Part 2. Synlett, 2021, 32, 326-328.	1.8	21
17	An Efficient Synthesis of Tenofovir (PMPA): A Key Intermediate Leading to Tenofovir-Based HIV Medicines. Organic Process Research and Development, 2020, 24, 1420-1427.	2.7	15
18	One-Step Synthesis of 2-Fluoroadenine Using Hydrogen Fluoride Pyridine in a Continuous Flow Operation. Organic Process Research and Development, 2019, 23, 1522-1528.	2.7	14

DAVID R SNEAD

#	Article	IF	CITATIONS
19	Toward a Practical, Nonenzymatic Process for Investigational COVID-19 Antiviral Molnupiravir from Cytidine: Supply-Centered Synthesis. Organic Process Research and Development, 2021, 25, 2679-2685.	2.7	14
20	An improved Balz-Schiemann reaction enabled by ionic liquids and continuous processing. Tetrahedron, 2019, 75, 4261-4265.	1.9	12
21	Synthesis of an Oxathiolane Drug Substance Intermediate Guided by Constraint-Driven Innovation. Organic Process Research and Development, 2020, 24, 2266-2270.	2.7	11
22	An Economical Route to Lamivudine Featuring a Novel Strategy for Stereospecific Assembly. Organic Process Research and Development, 2020, 24, 1194-1198.	2.7	11
23	Application of Vinamidinium Salt Chemistry for a Palladium Free Synthesis of Anti-Malarial MMV048: A "Bottom-Up―Approach. Organic Letters, 2021, 23, 5400-5404.	4.6	6
24	A Continuous Flow Sulfuryl Chloride-Based Reaction—Synthesis of a Key Intermediate in a New Route toward Emtricitabine and Lamivudine. Organic Process Research and Development, 2020, 24, 2271-2280.	2.7	5
25	Facile and Scalable Methodology for the Pyrrolo[2,1- <i>f</i>][1,2,4]triazine of Remdesivir. Organic Process Research and Development, 2022, 26, 82-90.	2.7	5
26	Diastereoselectivity is in the Details: Minor Changes Yield Major Improvements to the Synthesis of Bedaquiline**. Chemistry - A European Journal, 2022, 28, .	3.3	4
27	Development of a Practical Synthesis of the 8-FDC Fragment of OPC-167832. ACS Omega, 2022, 7, 7223-7228.	3.5	0