
Duncan W Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7774010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An ESCRT/VPS4 Envelopment Trap To Examine the Mechanism of Alphaherpesvirus Assembly and Transport in Neurons. Journal of Virology, 2022, 96, jvi0217821.	3.4	1
2	Motor Skills: Recruitment of Kinesins, Myosins and Dynein during Assembly and Egress of Alphaherpesviruses. Viruses, 2021, 13, 1622.	3.3	5
3	Herpesviruses assimilate kinesin to produce motorized viral particles. Nature, 2021, 599, 662-666.	27.8	26
4	The ESCRT-II Subunit EAP20/VPS25 and the Bro1 Domain Proteins HD-PTP and BROX Are Individually Dispensable for Herpes Simplex Virus 1 Replication. Journal of Virology, 2020, 94, .	3.4	14
5	HSV-1 Cytoplasmic Envelopment and Egress. International Journal of Molecular Sciences, 2020, 21, 5969.	4.1	43
6	Deletion of the Pseudorabies Virus gE/gI-US9p complex disrupts kinesin KIF1A and KIF5C recruitment during egress, and alters the properties of microtubule-dependent transport in vitro. PLoS Pathogens, 2020, 16, e1008597.	4.7	20
7	Seeking Closure: How Do Herpesviruses Recruit the Cellular ESCRT Apparatus?. Journal of Virology, 2019, 93, .	3.4	20
8	Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous System: The Ins and Outs. Viruses, 2019, 11, 1165.	3.3	18
9	Expression and Subcellular Localization of the Kaposi's Sarcoma-Associated Herpesvirus K15P Protein during Latency and Lytic Reactivation in Primary Effusion Lymphoma Cells. Journal of Virology, 2017, 91, .	3.4	3
10	Herpes Simplex Virus Capsid Localization to ESCRT-VPS4 Complexes in the Presence and Absence of the Large Tegument Protein UL36p. Journal of Virology, 2016, 90, 7257-7267.	3.4	27
11	Herpes Simplex Virus Capsid-Organelle Association in the Absence of the Large Tegument Protein UL36p. Journal of Virology, 2015, 89, 11372-11382.	3.4	15
12	Dynasore Disrupts Trafficking of Herpes Simplex Virus Proteins. Journal of Virology, 2015, 89, 6673-6684.	3.4	22
13	Blocking ESCRT-Mediated Envelopment Inhibits Microtubule-Dependent Trafficking of Alphaherpesviruses <i>In Vitro</i> . Journal of Virology, 2014, 88, 14467-14478.	3.4	26
14	Isolation and Preliminary Characterization of Herpes Simplex Virus 1 Primary Enveloped Virions from the Perinuclear Space. Journal of Virology, 2009, 83, 4757-4765.	3.4	46
15	UL36p Is Required for Efficient Transport of Membrane-Associated Herpes Simplex Virus Type 1 along Microtubules. Journal of Virology, 2008, 82, 7388-7394.	3.4	68
16	Reconstitution of Herpes Simplex Virus Microtubule-Dependent Trafficking In Vitro. Journal of Virology, 2006, 80, 4264-4275.	3.4	78
17	The Amino Terminus of the Herpes Simplex Virus 1 Protein Vhs Mediates Membrane Association and Tegument Incorporation. Journal of Virology, 2006, 80, 10117-10127.	3.4	11
18	Structural Basis for the Physiological Temperature Dependence of the Association of VP16 with the Cytoplasmic Tail of Herpes Simplex Virus Glycoprotein H. Journal of Virology, 2005, 79, 6134-6141.	3.4	30

DUNCAN W WILSON

#	Article	IF	CITATIONS
19	The cytoplasmic tail of herpes simplex virus envelope glycoprotein D binds to the tegument protein VP22 and to capsids. Journal of General Virology, 2005, 86, 253-261.	2.9	63
20	The cytoplasmic tail of Herpes simplex virus glycoprotein H binds to the tegument protein VP16 in vitro and in vivo. Virology, 2003, 317, 1-12.	2.4	58
21	A Subpopulation of Tegument Protein vhs Localizes to Detergent-Insoluble Lipid Rafts in Herpes Simplex Virus-Infected Cells. Journal of Virology, 2003, 77, 2038-2045.	3.4	41
22	Characterization of Herpes Simplex Virus-Containing Organelles by Subcellular Fractionation: Role for Organelle Acidification in Assembly of Infectious Particles. Journal of Virology, 2001, 75, 1236-1251.	3.4	125
23	Evaluation of the primary effect of brefeldin A treatment upon herpes simplex virus assembly. Journal of General Virology, 2001, 82, 1561-1567.	2.9	17