Hong Jin Fan List of Publications by Year in descending order Source: https://exaly.com/author-pdf/7773299/publications.pdf Version: 2024-02-01 279 42,816 101 papers citations h-index 288 288 37265 all docs docs citations times ranked citing authors 201 g-index | # | Article | IF | CITATIONS | |----|--|------|-----------| | 1 | Printed Zinc Paper Batteries. Advanced Science, 2022, 9, e2103894. | 11.2 | 42 | | 2 | Aqueous Zn2+/Na+ dual-salt batteries with stable discharge voltage and high columbic efficiency by systematic electrolyte regulation. Science China Chemistry, 2022, 65, 399-407. | 8.2 | 23 | | 3 | Bamboo Weaving Inspired Design of a Carbonaceous Electrode with Exceptionally High Volumetric Capacity. Nano Letters, 2022, 22, 954-962. | 9.1 | O | | 4 | Modulating Builtâ€In Electric Field via Variable Oxygen Affinity for Robust Hydrogen Evolution
Reaction in Neutral Media. Angewandte Chemie, 2022, 134, . | 2.0 | 14 | | 5 | NiMoFe nanoparticles@MoO ₂ nano-pillar arrays as bifunctional electrodes for ultra-low-voltage overall water splitting. Journal of Materials Chemistry A, 2022, 10, 3760-3770. | 10.3 | 22 | | 6 | Modulating Builtâ€In Electric Field via Variable Oxygen Affinity for Robust Hydrogen Evolution
Reaction in Neutral Media. Angewandte Chemie - International Edition, 2022, 61, . | 13.8 | 130 | | 7 | Design Strategies for Highâ€Energyâ€Density Aqueous Zinc Batteries. Angewandte Chemie, 2022, 134, . | 2.0 | 47 | | 8 | Design Strategies for Highâ€Energyâ€Density Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2022, 61, . | 13.8 | 383 | | 9 | Electronegativityâ€Induced Charge Balancing to Boost Stability and Activity of Amorphous Electrocatalysts. Advanced Materials, 2022, 34, e2100537. | 21.0 | 39 | | 10 | Reunderstanding the Reaction Mechanism of Aqueous Zn–Mn Batteries with Sulfate Electrolytes: Role of the Zinc Sulfate Hydroxide. Advanced Materials, 2022, 34, e2109092. | 21.0 | 97 | | 11 | Hydrated Eutectic Electrolyte with Ligandâ€Oriented Solvation Shell to Boost the Stability of Zinc
Battery. Advanced Functional Materials, 2022, 32, . | 14.9 | 87 | | 12 | An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. CheM, 2022, 8, 924-946. | 11.7 | 92 | | 13 | Biaxially Strained MoS ₂ Nanoshells with Controllable Layers Boost Alkaline Hydrogen Evolution. Advanced Materials, 2022, 34, e2202195. | 21.0 | 43 | | 14 | Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer. Advanced Materials, 2022, 34, e2202382. | 21.0 | 168 | | 15 | 3D zincophilic micro-scaffold enables stable Zn deposition. Energy Storage Materials, 2022, 51, 259-265. | 18.0 | 42 | | 16 | From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story. Journal of Energy Chemistry, 2021, 54, 194-201. | 12.9 | 171 | | 17 | Singleâ€Crystalline TiO ₂ (B) Nanobelts with Unusual Large Exposed {100} Facets and Enhanced Liâ€Storage Capacity. Advanced Functional Materials, 2021, 31, 2002187. | 14.9 | 25 | | 18 | Aligned Arrays of Na ₂ Ti ₃ O ₇ Nanobelts and Nanowires on Carbon Nanofiber as Highâ€Rate and Longâ€Cycling Anodes for Sodiumâ€Ion Hybrid Capacitors. Small Structures, 2021, 2, 2000073. | 12.0 | 32 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Progress and Challenge of Amorphous Catalysts for Electrochemical Water Splitting. , 2021, 3, 136-147. | | 143 | | 20 | C-plasma derived precise volumetric buffering for high-rate and stable alloying-type energy storage.
Nano Energy, 2021, 80, 105557. | 16.0 | 4 | | 21 | Poly(2,5â€Dihydroxyâ€1,4â€Benzoquinonyl Sulfide) As an Efficient Cathode for Highâ€Performance Aqueous
Zinc–Organic Batteries. Advanced Functional Materials, 2021, 31, 2010049. | 14.9 | 143 | | 22 | Metal organic framework (MOF) in aqueous energy devices. Materials Today, 2021, 48, 270-284. | 14.2 | 82 | | 23 | High-mass loading V3O7·H2O nanoarray for Zn-ion battery: New synthesis and two-stage ion intercalation chemistry. Nano Energy, 2021, 83, 105835. | 16.0 | 100 | | 24 | Mechanistic Insights of Mg ²⁺ â€Electrolyte Additive for Highâ€Energy and Longâ€Life Zincâ€Ion Hybrid Capacitors. Advanced Energy Materials, 2021, 11, 2101158. | 19.5 | 108 | | 25 | Boosting alkaline water electrolysis by asymmetric temperature modulation. Applied Physics Letters, 2021, 119, . | 3.3 | 2 | | 26 | Room-temperature continuous-wave vertical-cavity surface-emitting lasers based on 2D layered organic–inorganic hybrid perovskites. APL Materials, 2021, 9, 071106. | 5.1 | 21 | | 27 | Bilayer porous polymer for efficient passive building cooling. Nano Energy, 2021, 85, 105971. | 16.0 | 123 | | 28 | Understanding cathode materials in aqueous zinc–organic batteries. Current Opinion in Electrochemistry, 2021, 30, 100799. | 4.8 | 18 | | 29 | Tipâ€Enhanced Electric Field: A New Mechanism Promoting Mass Transfer in Oxygen Evolution Reactions. Advanced Materials, 2021, 33, e2007377. | 21.0 | 179 | | 30 | Ferroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectric. Nature Materials, 2021, 20, 612-617. | 27.5 | 87 | | 31 | Recent Progress on Two-Dimensional Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, . | 4.9 | 269 | | 32 | Atomically Dispersed Co ₂ â€"N ₆ and Feâ€"N ₄ Costructures Boost Oxygen Reduction Reaction in Both Alkaline and Acidic Media. Advanced Materials, 2021, 33, e2104718. | 21.0 | 218 | | 33 | Amorphous VO ₂ : A Pseudocapacitive Platform for Highâ€Rate Symmetric Batteries. Advanced Materials, 2021, 33, e2103736. | 21.0 | 60 | | 34 | Concurrent H ₂ Generation and Formate Production Assisted by CO ₂ Absorption in One Electrolyzer. Small Methods, 2021, 5, e2100871. | 8.6 | 9 | | 35 | Atomicâ€Layerâ€Deposited Amorphous MoS ₂ for Durable and Flexible Li–O ₂ Batteries. Small Methods, 2020, 4, 1900274. | 8.6 | 52 | | 36 | Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Materials, 2020, 25, 114-123. | 18.0 | 99 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 37 | Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy and Environmental Science, 2020, 13, 86-95. | 30.8 | 698 | | 38 | PtPdAg Hollow Nanodendrites: Templateâ€Free Synthesis and High Electrocatalytic Activity for Methanol Oxidation Reaction. Small Methods, 2020, 4, 1900709. | 8.6 | 44 | | 39 | Air Stable Organic–Inorganic Perovskite Nanocrystals@Polymer Nanofibers and Waveguide Lasing.
Small, 2020, 16, e2004409. | 10.0 | 29 | | 40 | Inkjet and Extrusion Printing for Electrochemical Energy Storage: A Minireview. Advanced Materials Technologies, 2020, 5, . | 5.8 | 51 | | 41 | Dualâ€Carbon Batteries: Materials and Mechanism. Small, 2020, 16, e2002803. | 10.0 | 57 | | 42 | In Situ Hardâ€Template Synthesis of Hollow Bowlâ€Like Carbon: A Potential Versatile Platform for Sodium and Zinc Ion Capacitors. Advanced Energy Materials, 2020, 10, 2002741. | 19.5 | 143 | | 43 | Continuous Tuning of Au–Cu ₂ O Janus Nanostructures for Efficient Charge Separation.
Angewandte Chemie - International Edition, 2020, 59, 22246-22251. | 13.8 | 69 | | 44 | Thermal Selfâ€Protection of Zincâ€lon Batteries Enabled by Smart Hygroscopic Hydrogel Electrolytes.
Advanced Energy Materials, 2020, 10, 2002898. | 19.5 | 102 | | 45 | Electrochemical Impedance Analysis of Thermogalvanic Cells. Chemical Research in Chinese
Universities, 2020, 36, 420-424. | 2.6 | 9 | | 46 | Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nature Communications, 2020, 11, 2253. | 12.8 | 112 | | 47 | Fluorine-Induced Dual Defects in Cobalt Phosphide Nanosheets Enhance Hydrogen Evolution Reaction Activity., 2020, 2, 736-743. | | 81 | | 48 | Flexible Pseudocapacitive Electrochromics via Inkjet Printing of Additiveâ€Free Tungsten Oxide Nanocrystal Ink. Advanced Energy Materials, 2020, 10, 2000142. | 19.5 | 82 | | 49 | Al ₂ O ₃ â€Assisted Confinement Synthesis of Oxide/Carbon Hollow Composite
Nanofibers and Application in Metalâ€Ion Capacitors. Small, 2020, 16, e2001950. | 10.0 | 65 | | 50 | Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries. Science China Chemistry, 2020, 63, 890-896. | 8.2 | 41 | | 51 | (Invited) Doping and Composition Optimization of Electrocatalysts for Water Splitting and Metal-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 678-678. | 0.0 | 0 | | 52 | (Invited) Nanoarray Cathode Design for Durable Zn Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 188-188. | 0.0 | 0 | | 53 | Hierarchical vertical graphene nanotube arrays via universal carbon plasma processing strategy: A platform for high-rate performance battery electrodes. Energy Storage Materials, 2019, 18, 462-469. | 18.0 | 14 | | 54 | Intercalation Pseudocapacitive Behavior Powers Aqueous Batteries. CheM, 2019, 5, 1359-1361. | 11.7 | 128 | | # | Article | IF | CITATIONS | |----|---|-------------|-----------| | 55 | Combining Co ₃ S ₄ and Ni:Co ₃ S ₄
nanowires as efficient catalysts for overall water splitting: an experimental and theoretical study. Nanoscale, 2019, 11, 2202-2210. | 5. 6 | 79 | | 56 | High-Index-Faceted Ni3S2 Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting. Nano-Micro Letters, 2019, 11, 12. | 27.0 | 81 | | 57 | Pseudocapacitor Electrodes: Regular Pores Matter. Joule, 2019, 3, 317-319. | 24.0 | 23 | | 58 | (Invited) Bi-Functional Electrocatalysts for Water Splitting and Metal-Ion Batteries. ECS Meeting Abstracts, 2019, , . | 0.0 | 0 | | 59 | (Invited) Nanoarray Electrodes for High-Rate Thin-Film Batteries. ECS Meeting Abstracts, 2019, , . | 0.0 | 0 | | 60 | Intercalation Na-ion storage in two-dimensional MoS2-xSex and capacity enhancement by selenium substitution. Energy Storage Materials, 2018, 14, 136-142. | 18.0 | 102 | | 61 | Prereduction of Metal Oxides via Carbon Plasma Treatment for Efficient and Stable Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1800340. | 10.0 | 39 | | 62 | In Situ Grown Epitaxial Heterojunction Exhibits Highâ€Performance Electrocatalytic Water Splitting. Advanced Materials, 2018, 30, e1705516. | 21.0 | 375 | | 63 | Flexible Quasiâ€Solidâ€State Sodiumâ€Ion Capacitors Developed Using 2D Metal–Organicâ€Framework Array a
Reactor. Advanced Energy Materials, 2018, 8, 1702769. | as
19.5 | 195 | | 64 | Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for Highâ€Rate Full Sodium Ion Storage Device. Advanced Energy Materials, 2018, 8, 1800058. | 19.5 | 157 | | 65 | A brief review on plasma for synthesis and processing of electrode materials. Materials Today Nano, 2018, 3, 28-47. | 4.6 | 59 | | 66 | Câ€Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Naâ€lon Storage. Advanced Materials, 2018, 30, e1804833. | 21.0 | 117 | | 67 | Light-Tunable 1T-TaS ₂ Charge-Density-Wave Oscillators. ACS Nano, 2018, 12, 11203-11210. | 14.6 | 51 | | 68 | Yin-Yang Harmony: Metal and Nonmetal Dual-Doping Boosts Electrocatalytic Activity for Alkaline Hydrogen Evolution. ACS Energy Letters, 2018, 3, 2750-2756. | 17.4 | 154 | | 69 | Inâ€Plane Ferroelectricity in Thin Flakes of Van der Waals Hybrid Perovskite. Advanced Materials, 2018, 30, e1803249. | 21.0 | 76 | | 70 | A Highâ∈Rate and Stable Quasiâ∈Solidâ∈State Zincâ∈Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 2018, 30, e1803181. | 21.0 | 571 | | 71 | Magnetic-field-induced rapid synthesis of defect-enriched Ni-Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst. Nano Energy, 2018, 51, 349-357. | 16.0 | 72 | | 72 | Molecular Engineering toward Coexistence of Dielectric and Optical Switch Behavior in Hybrid Perovskite Phase Transition Material. Journal of Physical Chemistry A, 2018, 122, 6416-6423. | 2.5 | 25 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 73 | Strong Electronic Interaction in Dualâ€Cationâ€Incorporated NiSe ₂ Nanosheets with Lattice Distortion for Highly Efficient Overall Water Splitting. Advanced Materials, 2018, 30, e1802121. | 21.0 | 361 | | 74 | Partial Nitridationâ€Induced Electrochemistry Enhancement of Ternary Oxide Nanosheets for Fiber Energy Storage Device. Advanced Energy Materials, 2018, 8, 1800685. | 19.5 | 70 | | 75 | Recent Advances in Znâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1802564. | 14.9 | 1,595 | | 76 | Hyperbranched TiO ₂ â€"CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes. Nanotechnology, 2018, 29, 335404. | 2.6 | 16 | | 77 | Room-temperature electrically driven phase transition of two-dimensional 1T-TaS ₂ layers. Nanoscale, 2017, 9, 2436-2441. | 5.6 | 19 | | 78 | High-content of sulfur uniformly embedded in mesoporous carbon: a new electrodeposition synthesis and an outstanding lithium–sulfur battery cathode. Journal of Materials Chemistry A, 2017, 5, 5905-5911. | 10.3 | 37 | | 79 | Silica-modified SnO2-graphene "slime―for self-enhanced li-ion battery anode. Nano Energy, 2017, 34, 449-455. | 16.0 | 62 | | 80 | Self-branched α-MnO ₂ /δ-MnO ₂ heterojunction nanowires with enhanced pseudocapacitance. Materials Horizons, 2017, 4, 415-422. | 12.2 | 105 | | 81 | A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy and Environmental Science, 2017, 10, 941-949. | 30.8 | 253 | | 82 | Substrateâ€Friendly Growth of Largeâ€Sized Ni(OH) ₂ Nanosheets for Flexible Electrochromic Films. Small, 2017, 13, 1700084. | 10.0 | 39 | | 83 | In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance. Advanced Materials, 2017, 29, 1606814. | 21.0 | 502 | | 84 | Ultrafine Metal Nanoparticles/Nâ€Doped Porous Carbon Hybrids Coated on Carbon Fibers as Flexible and Binderâ€Free Water Splitting Catalysts. Advanced Energy Materials, 2017, 7, 1700220. | 19.5 | 156 | | 85 | Integration of Energy Harvesting and Electrochemical Storage Devices. Advanced Materials
Technologies, 2017, 2, 1700182. | 5.8 | 78 | | 86 | Ultrathin MoSe ₂ @N-doped carbon composite nanospheres for stable Na-ion storage. Nanotechnology, 2017, 28, 42LT01. | 2.6 | 55 | | 87 | Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Letters, 2017, 17, 6475-6480. | 9.1 | 44 | | 88 | Nonaqueous Hybrid Lithiumâ€ion and Sodiumâ€ion Capacitors. Advanced Materials, 2017, 29, 1702093. | 21.0 | 699 | | 89 | Nitrogenâ€Plasmaâ€Activated Hierarchical Nickel Nitride Nanocorals for Energy Applications. Small, 2017, 13, 1604265. | 10.0 | 62 | | 90 | Plasma for Rapid Conversion Reactions and Surface Modification of Electrode Materials. Small Methods, 2017, 1, 1700164. | 8.6 | 60 | | # | Article | IF | Citations | |-----|---|------|-----------| | 91 | Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. Materials Horizons, 2017, 4, 885-894. | 12.2 | 108 | | 92 | Ultrathin CNTs@FeOOH nanoflake core/shell networks as efficient electrocatalysts for the oxygen evolution reaction. Materials Chemistry Frontiers, 2017, 1, 709-715. | 5.9 | 62 | | 93 | Singleâ€Crystalline, Metallic TiC Nanowires for Highly Robust and Wideâ€Temperature Electrochemical Energy Storage. Small, 2017, 13, 1602742. | 10.0 | 89 | | 94 | Rapid Synthesis of Cobalt Nitride Nanowires: Highly Efficient and Low ost Catalysts for Oxygen Evolution. Angewandte Chemie - International Edition, 2016, 55, 8670-8674. | 13.8 | 624 | | 95 | Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS ₂ . Advanced Functional Materials, 2016, 26, 1169-1177. | 14.9 | 376 | | 96 | A Highâ€Energy Lithiumâ€Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide
Nanoparticle Chain Anode with a Pyridineâ€Derived Porous Nitrogenâ€Doped Carbon Cathode. Advanced
Functional Materials, 2016, 26, 3082-3093. | 14.9 | 330 | | 97 | 3D Porous Hierarchical Nickel–Molybdenum Nitrides Synthesized by RF Plasma as Highly Active and Stable Hydrogenâ€Evolutionâ€Reaction Electrocatalysts. Advanced Energy Materials, 2016, 6, 1600221. | 19.5 | 464 | | 98 | Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable Highâ€Rate and Longâ€Cycle Sodiumâ€ion Storage. Small, 2016, 12, 3048-3058. | 10.0 | 440 | | 99 | Integrated Photoâ€Supercapacitor Based on PEDOT Modified Printable Perovskite Solar Cell. Advanced Materials Technologies, 2016, 1, 1600074. | 5.8 | 110 | | 100 | Discerning the Surface and Bulk Recombination Kinetics of Organic–Inorganic Halide Perovskite Single Crystals. Advanced Energy Materials, 2016, 6, 1600551. | 19.5 | 271 | | 101 | Rapid Synthesis of Cobalt Nitride Nanowires: Highly Efficient and Lowâ€Cost Catalysts for Oxygen Evolution. Angewandte Chemie, 2016, 128, 8812-8816. | 2.0 | 132 | | 102 | 3D Interdigital Au/MnO ₂ /Au Stacked Hybrid Electrodes for Onâ€Chip Microsupercapacitors. Small, 2016, 12, 3059-3069. | 10.0 | 119 | | 103 | Recent Advances in Improving the Stability of Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501420. | 19.5 | 303 | | 104 | A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. Nano Energy, 2016, 26, 1-6. | 16.0 | 31 | | 105 | Energy Storage Performance Enhancement by Surface Engineering of Electrode Materials. Advanced Materials Interfaces, 2016, 3, 1600430. | 3.7 | 17 | | 106 | Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage. ACS Nano, 2016, 10, 9201-9207. | 14.6 | 213 | | 107 | 2D Black Phosphorus/SrTiO ₃ â€Based Programmable Photoconductive Switch. Advanced Materials, 2016, 28, 7768-7773. | 21.0 | 57 | | 108 | Ultrafastâ€Charging Supercapacitors Based on Cornâ€Like Titanium Nitride Nanostructures. Advanced Science, 2016, 3, 1500299. | 11.2 | 163 | | # | Article | IF | Citations | |-----|---|------|-----------| | 109 | Perovskite solar cell powered electrochromic batteries for smart windows. Materials Horizons, 2016, 3, 588-595. | 12.2 | 148 | | 110 | Atomic Layer Deposition of Amorphous TiO ₂ on Carbon Nanotube Networks and Their Superior Li and Na Ion Storage Properties. Advanced
Materials Interfaces, 2016, 3, 1600375. | 3.7 | 75 | | 111 | New way to multi-shelled hollow spheres for robust battery electrode. Inorganic Chemistry Frontiers, 2016, 3, 1004-1006. | 6.0 | 4 | | 112 | Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Advanced Science, 2016, 3, 1500286. | 11.2 | 1,001 | | 113 | Giant photostriction in organic–inorganic lead halide perovskites. Nature Communications, 2016, 7, 11193. | 12.8 | 164 | | 114 | Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 2016, 7, 12122. | 12.8 | 1,232 | | 115 | Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance. Journal of Materials Chemistry A, 2016, 4, 17801-17808. | 10.3 | 79 | | 116 | Solvent engineering for fast growth of centimetric high-quality CH ₃ NH ₃ Pbl ₃ perovskite single crystals. New Journal of Chemistry, 2016, 40, 7261-7264. | 2.8 | 20 | | 117 | Multiple electrical breakdowns and electrical annealing using high current approximating breakdown current of silver nanowire network. Nanotechnology, 2016, 27, 025703. | 2.6 | 28 | | 118 | Photoresponse: Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS ₂ (Adv. Funct. Mater. 8/2016). Advanced Functional Materials, 2016, 26, 1146-1146. | 14.9 | 15 | | 119 | Optoelectronic properties of atomically thin ReSSe with weak interlayer coupling. Nanoscale, 2016, 8, 5826-5834. | 5.6 | 32 | | 120 | Green synthesis of vertical graphene nanosheets and their application in high-performance supercapacitors. RSC Advances, 2016, 6, 23968-23973. | 3.6 | 39 | | 121 | Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II
MoTe ₂ /MoS ₂ van der Waals Heterostructures. ACS Nano, 2016, 10, 3852-3858. | 14.6 | 453 | | 122 | Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy, 2016, 20, 244-253. | 16.0 | 62 | | 123 | All Metal Nitrides Solidâ€State Asymmetric Supercapacitors. Advanced Materials, 2015, 27, 4566-4571. | 21.0 | 371 | | 124 | Understanding the Enhancement Mechanisms of Surface Plasmonâ€Mediated Photoelectrochemical Electrodes: A Case Study on Au Nanoparticle Decorated TiO ₂ Nanotubes. Advanced Materials Interfaces, 2015, 2, 1500169. | 3.7 | 73 | | 125 | Coupling and Interlayer Exciton in Twistâ€Stacked WS ₂ Bilayers. Advanced Optical Materials, 2015, 3, 1600-1605. | 7.3 | 63 | | 126 | Van der Waals p–n Junction Based on an Organic–Inorganic Heterostructure. Advanced Functional Materials, 2015, 25, 5865-5871. | 14.9 | 98 | | # | Article | IF | Citations | |-----|---|------|-----------| | 127 | "lsofacet―Anatase TiO ₂ Microcages: Topotactic Synthesis and Ultrastable Liâ€lon Storage.
Advanced Materials Interfaces, 2015, 2, 1500210. | 3.7 | 18 | | 128 | Atomic-layer-deposition alumina induced carbon on porous Ni _x Co _{1 â^' x} O nanonets for enhanced pseudocapacitive and Li-ion storage performance. Nanotechnology, 2015, 26, 014001. | 2.6 | 21 | | 129 | Enhanced Lithium Storage Performance of CuO Nanowires by Coating of Graphene Quantum Dots. Advanced Materials Interfaces, 2015, 2, 1400499. | 3.7 | 102 | | 130 | Applications of atomic layer deposition in solar cells. Nanotechnology, 2015, 26, 064001. | 2.6 | 86 | | 131 | Solution Transformation of Cu ₂ 0 into CuInS ₂ for Solar Water Splitting. Nano Letters, 2015, 15, 1395-1402. | 9.1 | 108 | | 132 | Self-Induced Uniaxial Strain in MoS ₂ Monolayers with Local van der Waals-Stacked Interlayer Interactions. ACS Nano, 2015, 9, 2704-2710. | 14.6 | 47 | | 133 | Efficient oxygen reduction reaction using mesoporous Ni-doped Co ₃ O ₄ nanowire array electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 18372-18379. | 10.3 | 54 | | 134 | A mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale, 2015, 7, 13363-13368. | 5.6 | 64 | | 135 | Highly stable and flexible Li-ion battery anodes based on TiO ₂ coated 3D carbon nanostructures. Journal of Materials Chemistry A, 2015, 3, 15394-15398. | 10.3 | 65 | | 136 | Conformal Cu ₂ S-coated Cu ₂ O nanostructures grown by ion exchange reaction and their photoelectrochemical properties. Nanotechnology, 2015, 26, 185401. | 2.6 | 51 | | 137 | Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy and Environmental Science, 2015, 8, 1559-1568. | 30.8 | 210 | | 138 | Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy, 2015, 13, 658-669. | 16.0 | 187 | | 139 | Monolayers of WxMo1 \hat{a} 'xS2 alloy heterostructure with in-plane composition variations. Applied Physics Letters, 2015, 106, . | 3.3 | 99 | | 140 | Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors. ChemNanoMat, 2015, 1, 458-476. | 2.8 | 28 | | 141 | A low-cost and one-step synthesis of N-doped monolithic quasi-graphene films with porous carbon frameworks for Li-ion batteries. Nano Energy, 2015, 17, 43-51. | 16.0 | 73 | | 142 | Ultrathin Anatase TiO ₂ Nanosheets Embedded with TiO ₂ â€B Nanodomains for Lithiumâ€Ion Storage: Capacity Enhancement by Phase Boundaries. Advanced Energy Materials, 2015, 5, 1401756. | 19.5 | 208 | | 143 | Graphene Quantum Dots Coated VO ₂ Arrays for Highly Durable Electrodes for Li and Na Ion Batteries. Nano Letters, 2015, 15, 565-573. | 9.1 | 493 | | 144 | A High Energy and Power Liâ€lon Capacitor Based on a TiO ₂ Nanobelt Array Anode and a Graphene Hydrogel Cathode. Small, 2015, 11, 1470-1477. | 10.0 | 256 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 145 | Novel Metal@Carbon Spheres Core–Shell Arrays by Controlled Selfâ€Assembly of Carbon Nanospheres:
A Stable and Flexible Supercapacitor Electrode. Advanced Energy Materials, 2015, 5, 1401709. | 19.5 | 139 | | 146 | VO ₂ nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material. Materials Horizons, 2015, 2, 237-244. | 12.2 | 152 | | 147 | Three-dimensional graphene and their integrated electrodes. Nano Today, 2014, 9, 785-807. | 11.9 | 251 | | 148 | A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film.
Nano Letters, 2014, 14, 7180-7187. | 9.1 | 346 | | 149 | Atomicâ€Layerâ€Depositionâ€Assisted Formation of Carbon Nanoflakes on Metal Oxides and Energy Storage Application. Small, 2014, 10, 300-307. | 10.0 | 60 | | 150 | Synthesis of Freeâ€Standing Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application. Small, 2014, 10, 766-773. | 10.0 | 413 | | 151 | Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6, 5008-5048. | 5.6 | 363 | | 152 | Oxide Nanostructures Hyperbranched with Thin and Hollow Metal Shells for Highâ€Performance Nanostructured Battery Electrodes. Small, 2014, 10, 2419-2428. | 10.0 | 37 | | 153 | TiO2 nanotube @ SnO2 nanoflake core–branch arrays for lithium-ion battery anode. Nano Energy, 2014, 4, 105-112. | 16.0 | 165 | | 154 | Electrospun Fe2O3–carbon composite nanofibers as durable anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 10835. | 10.3 | 91 | | 155 | Preparation of CoAl layered double hydroxide nanoflake arrays and their high supercapacitance performance. Applied Clay Science, 2014, 102, 28-32. | 5.2 | 41 | | 156 | Highly Stable and Reversible Lithium Storage in SnO ₂ Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition. Nano Letters, 2014, 14, 4852-4858. | 9.1 | 269 | | 157 | Triple-layered nanostructured WO ₃ photoanodes with enhanced photocurrent generation and superior stability for photoelectrochemical solar energy conversion. Nanoscale, 2014, 6, 13457-13462. | 5.6 | 57 | | 158 | Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to boost supercapacitive performance. Nanoscale, 2014, 6, 5691-5697. | 5.6 | 42 | | 159 | Plasmonic Nanoclocks. Nano Letters, 2014, 14, 5162-5169. | 9.1 | 8 | | 160 | Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345, 1593-1596. | 12.6 | 2,260 | | 161 | Porous \hat{l} ±-Fe 2 O 3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy, 2014, 9, 364-372. | 16.0 | 241 | | 162 | Hierarchically porous three-dimensional electrodes of CoMoO ₄ and ZnCo ₂ O ₄ and their high anode performance for lithium ion batteries. Nanoscale, 2014, 6, 10556. | 5.6 | 77 | | # | Article | IF | Citations | |-----|--|------|-----------| | 163 | A New Type of Porous Graphite Foams and Their Integrated Composites with Oxide/Polymer Core/Shell Nanowires for Supercapacitors: Structural Design, Fabrication, and Full Supercapacitor Demonstrations. Nano Letters, 2014, 14, 1651-1658. | 9.1 | 428 | | 164 | A V ₂ O ₅ /Conductiveâ€Polymer Core/Shell Nanobelt Array on Threeâ€Dimensional Graphite Foam: A Highâ€Rate, Ultrastable, and Freestanding Cathode for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 5794-5800. | 21.0 | 450 | | 165 | Controllable
Growth of Conducting Polymers Shell for Constructing High-Quality
Organic/Inorganic Core/Shell Nanostructures and Their Optical-Electrochemical Properties. Nano
Letters, 2013, 13, 4562-4568. | 9.1 | 197 | | 166 | Photoluminescence via gap plasmons between single silver nanowires and a thin gold film. Nanoscale, 2013, 5, 12086. | 5.6 | 20 | | 167 | Three-Dimensional Graphene Foam Supported Fe ₃ O ₄ Lithium Battery Anodes with Long Cycle Life and High Rate Capability. Nano Letters, 2013, 13, 6136-6143. | 9.1 | 738 | | 168 | A Microâ€pulse Process of Atomic Layer Deposition of Iron Oxide Using Ferrocene and Ozone Precursors and Tiâ€Doping. Chemical Vapor Deposition, 2013, 19, 104-110. | 1.3 | 25 | | 169 | Photon Upconversion in Heteroâ€nanostructured Photoanodes for Enhanced Nearâ€Infrared Light Harvesting. Advanced Materials, 2013, 25, 1603-1607. | 21.0 | 127 | | 170 | Ultrafast Exciton Dynamics and Twoâ€Photon Pumped Lasing from ZnSe Nanowires. Advanced Optical Materials, 2013, 1, 319-326. | 7.3 | 22 | | 171 | Exciton Dynamics: Ultrafast Exciton Dynamics and Twoâ€Photon Pumped Lasing from ZnSe Nanowires (Advanced Optical Materials 4/2013). Advanced Optical Materials, 2013, 1, 276-276. | 7.3 | 1 | | 172 | Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. Nanoscale, 2013, 5, 6040. | 5.6 | 79 | | 173 | Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells. Nature Communications, 2013, 4, 2004. | 12.8 | 118 | | 174 | Rationally Designed Hierarchical TiO ₂ @Fe ₂ O ₃ Hollow Nanostructures for Improved Lithium Ion Storage. Advanced Energy Materials, 2013, 3, 737-743. | 19.5 | 296 | | 175 | Controlled synthesis of hierarchical graphene-wrapped TiO ₂ @Co ₃ O ₄ coaxial nanobelt arrays for high-performance lithium storage. Journal of Materials Chemistry A, 2013, 1, 273-281. | 10.3 | 135 | | 176 | Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer. Nanophotonics, 2013, 2, 153-160. | 6.0 | 26 | | 177 | Light Harvesting: Photon Upconversion in Heteroâ€nanostructured Photoanodes for Enhanced
Nearâ€Infrared Light Harvesting (Adv. Mater. 11/2013). Advanced Materials, 2013, 25, 1656-1656. | 21.0 | 0 | | 178 | Self-Assembled Porous ZnS Nanospheres with High Photocatalytic Performance. Science of Advanced Materials, 2013, 5, 1329-1336. | 0.7 | 36 | | 179 | Hollow core–shell nanostructure supercapacitor electrodes: gap matters. Energy and Environmental Science, 2012, 5, 9085. | 30.8 | 184 | | 180 | Branched nanowires: Synthesis and energy applications. Nano Today, 2012, 7, 327-343. | 11.9 | 309 | | # | Article | IF | Citations | |-----|---|------|-----------| | 181 | Wavelength tunable electroluminescence from randomly assembled n-CdS _x Se _{1â°'x} nanowires/p ⁺ -SiC heterojunction. Nanoscale, 2012, 4, 1467-1470. | 5.6 | 7 | | 182 | Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor. Scientific Reports, 2012, 2, 981. | 3.3 | 85 | | 183 | Porous Hydroxide Nanosheets on Preformed Nanowires by Electrodeposition: Branched Nanoarrays for Electrochemical Energy Storage. Chemistry of Materials, 2012, 24, 3793-3799. | 6.7 | 201 | | 184 | Inverse opals coupled with nanowires as photoelectrochemical anode. Nano Energy, 2012, 1, 322-327. | 16.0 | 50 | | 185 | Temperature-dependent terahertz conductivity of tin oxide nanowire films. Journal Physics D: Applied Physics, 2012, 45, 465101. | 2.8 | 30 | | 186 | Robust, High-Density Zinc Oxide Nanoarrays by Nanoimprint Lithography-Assisted Area-Selective Atomic Layer Deposition. Journal of Physical Chemistry C, 2012, 116, 23729-23734. | 3.1 | 26 | | 187 | High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage. ACS Nano, 2012, 6, 5531-5538. | 14.6 | 972 | | 188 | Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy and Environmental Science, 2012, 5, 6559. | 30.8 | 421 | | 189 | Editorial for nanoscale themed issue "Recent Advance in Semiconductor Nanowire Researchâ€.
Nanoscale, 2012, 4, 1410. | 5.6 | 2 | | 190 | Ordered Array of Gold Semishells on TiO ₂ Spheres: An Ultrasensitive and Recyclable SERS Substrate. ACS Applied Materials & | 8.0 | 186 | | 191 | Three-dimensional tubular arrays of MnO ₂ –NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry, 2012, 22, 2419-2426. | 6.7 | 408 | | 192 | Homogeneous Photosensitization of Complex TiO2 Nanostructures for Efficient Solar Energy Conversion. Scientific Reports, 2012, 2, 451. | 3.3 | 81 | | 193 | Quantumâ€Dotâ€Sensitized TiO ₂ Inverse Opals for Photoelectrochemical Hydrogen Generation. Small, 2012, 8, 37-42. | 10.0 | 208 | | 194 | Inverse Opals: Quantum-Dot-Sensitized TiO2 Inverse Opals for Photoelectrochemical Hydrogen Generation (Small 1/2012). Small, 2012, 8, 36-36. | 10.0 | 4 | | 195 | Lowâ€Field Magnetoresistance Effect in Core–Shell Structured
La _{0.7} Sr _{0.3} CoO ₃ Nanoparticles. Small, 2012, 8, 1060-1065. | 10.0 | 17 | | 196 | Highly Ordered Arrays of Particleâ€inâ€Bowl Plasmonic Nanostructures for Surfaceâ€Enhanced Raman
Scattering. Small, 2012, 8, 2548-2554. | 10.0 | 84 | | 197 | Atomic layer deposition for nanofabrication and interface engineering. Nanoscale, 2012, 4, 1522. | 5.6 | 80 | | 198 | Composition-Graded Zn _{<i>x</i>} Cd _{_{1â€"<i>x</i>}} Se@ZnO Coreâ€"Shell Nanowire Array Electrodes for Photoelectrochemical Hydrogen Generation. Journal of Physical Chemistry C, 2012, 116, 3802-3807. | 3.1 | 81 | | # | Article | IF | Citations | |-----|---|---|--------------| | 199 | Nanoporous Walls on Macroporous Foam: Rational Design of Electrodes to Push Areal Pseudocapacitance. Advanced Materials, 2012, 24, 4186-4190. | 21.0 | 239 | | 200 | A Novel Photoanode with Threeâ€Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells. Advanced Materials, 2012, 24, 4157-4162. | 21.0 | 93 | | 201 | TiO ₂ /(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties.
Journal of Physical Chemistry C, 2012, 116, 11956-11963. | 3.1 | 241 | | 202 | Efficiency Enhancement in Bulk-Heterojunction Solar Cells Integrated with Large-Area Ag
Nanotriangle Arrays. Journal of Physical Chemistry C, 2012, 116, 14820-14825. | 3.1 | 46 | | 203 | Critical behavior and the absence of glass state in ferromagnetic La0.7Ca0.3CoO3 nanowires. Acta Materialia, 2012, 60, 1238-1245. | 7.9 | 3 | | 204 | Semiconductor Nanowire Heterostructures: Controlled Growth and Optoelectronic Applications. Nanoscience and Technology, 2012, , 137-166. | 1.5 | 0 | | 205 | Highly effective SERS substrates based on an atomic-layer-deposition-tailored nanorod array scaffold.
Nanoscale, 2011, 3, 3627.
Magnetic phase diagram and critical behavior of electron-doped <mml:math< td=""><td>5.6</td><td>25</td></mml:math<> | 5.6 | 25 | | 206 | xmlns:mml="http://www.w3.org/1998/Math/MathML"
display="inline"> <mml:mrow><mml:msub><mml:mtext>La</mml:mtext><mml:mrow><mml:mi
mathvariant="normal">x</mml:mi
</mml:mrow></mml:msub><mml:msub><mml:mtext>Ca</mml:mtext><mnl:mathvariant="normal">x</mnl:mathvariant="normal"></mml:msub></mml:mrow> <mml:msub><mml:mtext></mml:mtext></mml:msub> | 3.2
mrow> <mi
nl:mrow><</mi
 | ml:mn>1 | | 207 | stretc. Physical Review B, 2011, 83, . Single-Crystalline Cu ₄ Bi ₄ S ₉ Nanoribbons: Facile
Synthesis, Growth Mechanism, and Surface Photovoltaic Properties. Chemistry of Materials, 2011, 23, 1299-1305. | 6.7 | 58 | | 208 | Solution heteroepitaxial growth of dendritic SnO ₂ /TiO ₂ hybrid nanowires. Journal of Materials Research, 2011, 26, 2254-2260. | 2.6 | 30 | | 209 | Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy and Environmental Science, 2011, 4, 4496. | 30.8 | 386 | | 210 | A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage. Energy and Environmental Science, 2011, 4, 4954. | 30.8 | 255 | | 211 | Ultrathin nickel hydroxidenitrate nanoflakes branched on nanowire arrays for high-rate pseudocapacitive energy storage. Chemical Communications, 2011, 47, 3436. | 4.1 | 169 | | 212 | Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm, 2011, 13, 3506. | 2.6 | 220 | | 213 | Sr1â^'xLaxTiO3 nanoparticles: Synthesis, characterization and enhanced thermoelectric response.
Scripta Materialia, 2011, 65, 190-193. | 5.2 | 17 | | 214 | Novel Silicon Nanohemisphereâ€Array Solar Cells with Enhanced Performance. Small, 2011, 7, 3138-3143. | 10.0 | 50 | | 215 | Solar Cells: Novel Silicon Nanohemisphere-Array Solar Cells with Enhanced Performance (Small) Tj ETQq1 1 0.784 | 314 rgBT /0
10.0 | Oyerlock 1.0 | | 216 | Epitaxial Growth of Branched αâ€Fe ₂ O ₃ /SnO ₂ Nanoâ€Heterostructures with Improved Lithiumâ€Ion Battery Performance. Advanced Functional Materials, 2011, 21, 2439-2445. | 14.9 | 439 | | # | Article | IF | Citations | |-----|---|------|-----------| | 217 | Co ₃ O ₄ Nanowire@MnO ₂ Ultrathin Nanosheet Core/Shell Arrays:
A New Class of Highâ€Performance Pseudocapacitive Materials. Advanced Materials, 2011, 23, 2076-2081. | 21.0 | 1,250 | | 218 | Energy Storage: Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials (Adv. Mater. 18/2011). Advanced Materials, 2011, 23, 2075-2075. | 21.0 | 25 | | 219 | The origin of different magnetic properties in nanosized Ca0.82La0.18MnO3: Wires versus particles. Applied Physics Letters, 2011, 98, 142502. | 3.3 | 19 | | 220 | Influence of Y3+ doping on the high-temperature transport mechanism and thermoelectric response of misfit-layered Ca3Co4O9. Applied Physics A: Materials Science and Processing, 2010, 99, 451-458. | 2.3 | 16 | | 221 | Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNTâ€"ZnO Heterostructures. Nanoscale Research Letters, 2010, 5, 1836-1840. | 5.7 | 67 | | 222 | Diffusionâ€Facilitated Fabrication of Goldâ€Decorated Zn ₂ SiO ₄ Nanotubes by a Oneâ€Step Solidâ€State Reaction. Angewandte Chemie - International Edition, 2010, 49, 1442-1446. | 13.8 | 48 | | 223 | Thermal conductivity of electron-doped CaMnO3 perovskites: Local lattice distortions and optical phonon thermal excitation. Acta Materialia, 2010, 58, 6306-6316. | 7.9 | 24 | | 224 | Orbital ordering-driven ferromagnetism in LaCoO3 nanowires. Journal of Applied Physics, 2010, 108, . | 2.5 | 16 | | 225 | Fine Structure of Ultraviolet Photoluminescence of Tin Oxide Nanowires. Journal of Physical Chemistry C, 2010, 114, 3407-3410. | 3.1 | 68 | | 226 | Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1824-1828. | 8.0 | 198 | | 227 | Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Applied Physics Letters, 2010, 96, . | 3.3 | 238 | | 228 | Doping-Induced Metalâ^'Insulator Transition and the Thermal Transport Properties in Ca _{3â^'<i>x</i>} Y _{<i>x</i>} Co ₄ O ₉ . Journal of Physical Chemistry C, 2010, 114, 5174-5181. | 3.1 | 56 | | 229 | Strongly Correlated Properties and Enhanced Thermoelectric Response in Ca ₃ Co _{4â^²<i>x</i>} M _{<i>x</i>} O ₉ (M = Fe, Mn, and Cu). Chemistry of Materials, 2010, 22, 1155-1163. | 6.7 | 141 | | 230 | Kinetics of Stop-Flow Atomic Layer Deposition for High Aspect Ratio Template Filling through Photonic Band Gap Measurements. Journal of Physical Chemistry C, 2010, 114, 14843-14848. | 3.1 | 44 | | 231 | Ultraviolet Electroluminescence from Randomly Assembled <i>n</i> >-SnO ₂
Nanowires <i>p</i> -GaN:Mg Heterojunction. ACS Applied Materials & Description (1911) (191 | 8.0 | 41 | | 232 | Improved Thermoelectric Properties of La _{1â^'<i>x</i>} Sr _{<i>x</i>} CoO ₃ Nanowires. Journal of Physical Chemistry C, 2010, 114, 13947-13953. | 3.1 | 42 | | 233 | Surface plasmon induced exciton redistribution in ZnCdO/ZnO coaxial multiquantum-well nanowires. Applied Physics Letters, 2010, 97, . | 3.3 | 11 | | 234 | Correlation between the Structural Distortions and Thermoelectric Characteristics in La _{$1\hat{a}^{\prime}$<i>x</i>} A _{<i>x</i>} CoO ₃ (A = Ca and Sr). Inorganic Chemistry, 2010, 49, 3216-3223. | 4.0 | 86 | | # | Article | IF | Citations | |-----|--|------|-----------| | 235 | Percolative Nano-Sized Phase Separation in Mix-Valent Manganites. Journal of Physical Chemistry C, 2010, 114, 1491-1497. | 3.1 | 5 | | 236 | ZnCdO/ZnO Coaxial Multiple Quantum Well Nanowire Heterostructures and Optical Properties. Journal of Physical Chemistry C, 2010, 114, 3863-3868. | 3.1 | 31 | | 237 | Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis:
Large-Area Design and Reversible Lithium Storage. Chemistry of Materials, 2010, 22, 212-217. | 6.7 | 311 | | 238 | Randomly packed n-SnO2 nanorods/p-SiC heterojunction light-emitting diodes. Applied Physics Letters, 2009, 95, 201104. | 3.3 | 29 | | 239 | High-temperature lasing characteristics of randomly assembled SnO2 backbone nanowires coated with ZnO nanofins. Journal of Applied Physics, 2009, 106, 123105. | 2.5 | 13 |
| 240 | THz Emission from PZT Nanotubes. Ferroelectrics, 2009, 378, 79-83. | 0.6 | 3 | | 241 | ZnO-based ternary compound nanotubes and nanowires. Journal of Materials Chemistry, 2009, 19, 885-900. | 6.7 | 101 | | 242 | From Ordered Arrays of Nanowires to Controlled Solid State Reactions. Advances in Solid State Physics, 2009, , 3-12. | 0.8 | 1 | | 243 | High Temperature Thermoelectric Response of Electron-Doped CaMnO ₃ . Chemistry of Materials, 2009, 21, 4653-4660. | 6.7 | 149 | | 244 | Multitwinned Spinel Nanowires by Assembly of Nanobricks <i>via</i> Oriented Attachment: A Case Study of Zn ₂ TiO ₄ . ACS Nano, 2009, 3, 555-562. | 14.6 | 64 | | 245 | Ferroelectric Transistors with Nanowire Channel: Toward Nonvolatile Memory Applications. ACS
Nano, 2009, 3, 700-706. | 14.6 | 89 | | 246 | Hierarchical Assembly of ZnO Nanostructures on SnO ₂ Backbone Nanowires: Low-Temperature Hydrothermal Preparation and Optical Properties. ACS Nano, 2009, 3, 3069-3076. | 14.6 | 260 | | 247 | THz REFLECTIVITY SPECTROSCOPY OF TUBULAR PZT NANOSTRUCTURES. Integrated Ferroelectrics, 2009, 106, 17-22. | 0.7 | 0 | | 248 | Facile synthesis and shape evolution of highly symmetric 26-facet polyhedral microcrystals of Cu2O. CrystEngComm, 2009, 11, 2291. | 2.6 | 50 | | 249 | The morphology of Au@MgO nanopeapods. Nanotechnology, 2009, 20, 455603. | 2.6 | 15 | | 250 | Terahertz Emission from Tubular Pb(Zr,Ti)O ₃ Nanostructures. Nano Letters, 2008, 8, 4404-4409. | 9.1 | 62 | | 251 | Surface Reaction of ZnO Nanowires with Electron-Beam Generated Alumina Vapor. Journal of Physical Chemistry C, 2008, 112, 6770-6774. | 3.1 | 15 | | 252 | Conformal oxide coating of carbon nanotubes. Applied Physics Letters, 2008, 92, . | 3.3 | 34 | | # | Article | IF | Citations | |-----|---|------|-----------| | 253 | Vortex ferroelectric domains. Journal of Physics Condensed Matter, 2008, 20, 342201. | 1.8 | 155 | | 254 | Solution-process coating of vertical ZnO nanowires with ferroelectrics. Nanotechnology, 2008, 19, 375302. | 2.6 | 11 | | 255 | Fracture strength and Young's modulus of ZnO nanowires. Nanotechnology, 2007, 18, 205503. | 2.6 | 130 | | 256 | Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect:Â The Basic Concept. Nano Letters, 2007, 7, 993-997. | 9.1 | 363 | | 257 | ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling. Applied Physics Letters, 2007, 90, 143116. | 3.3 | 73 | | 258 | LIQUID SOURCE MISTED CHEMICAL DEPOSITION PROCESS OF THREE-DIMENSIONAL NANO-FERROELECTRICS WITH SUBSTRATE HEATING. Integrated Ferroelectrics, 2007, 95, 180-186. | 0.7 | 8 | | 259 | Laser-Interference Lithography Tailored for Highly Symmetrically Arranged ZnO Nanowire Arrays.
Small, 2007, 3, 76-80. | 10.0 | 95 | | 260 | Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review. Small, 2007, 3, 1660-1671. | 10.0 | 872 | | 261 | Template-Assisted Large-Scale Ordered Arrays of ZnO Pillars for Optical and Piezoelectric Applications. Small, 2006, 2, 561-568. | 10.0 | 209 | | 262 | Semiconductor Nanowires: From Self-Organization to Patterned Growth. Small, 2006, 2, 700-717. | 10.0 | 715 | | 263 | Stimulated emission from ZnO nanorods. Physica Status Solidi (B): Basic Research, 2006, 243, 853-857. | 1.5 | 47 | | 264 | Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nature Materials, 2006, 5, 627-631. | 27.5 | 699 | | 265 | Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. Journal of Crystal Growth, 2006, 287, 34-38. | 1.5 | 108 | | 266 | Metal nanotube membranes and their lithographic applications. , 2006, , . | | 0 | | 267 | Ferroelectric nanotubes fabricated using nanowires as positive templates. Applied Physics Letters, 2006, 89, 172907. | 3.3 | 72 | | 268 | Vapour-transport-deposition growth of ZnO nanostructures: switch betweenc-axial wires anda-axial belts by indium doping. Nanotechnology, 2006, 17, S231-S239. | 2.6 | 97 | | 269 | Single-crystalline MgAl2O4spinel nanotubes using a reactive and removable MgO nanowire template.
Nanotechnology, 2006, 17, 5157-5162. | 2.6 | 69 | | 270 | A low-temperature evaporation route for ZnO nanoneedles and nanosaws. Applied Physics A: Materials Science and Processing, 2005, 80, 457-460. | 2.3 | 17 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 271 | Local luminescence of ZnO nanowire-covered surface: A cathodoluminescence microscopy study. Applied Physics Letters, 2005, 86, 023113. | 3.3 | 43 | | 272 | Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. Nanotechnology, 2005, 16, 913-917. | 2.6 | 147 | | 273 | Self-assembly of ZnO nanowires and the spatial resolved characterization of their luminescence.
Nanotechnology, 2004, 15, 1401-1404. | 2.6 | 52 | | 274 | Growth mechanism and characterization of zinc oxide microcages. Solid State Communications, 2004, 130, 517-521. | 1.9 | 75 | | 275 | On the growth mechanism and optical properties of ZnO multi-layer nanosheets. Applied Physics A: Materials Science and Processing, 2004, 79, 1895-1900. | 2.3 | 96 | | 276 | Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers. Superlattices and Microstructures, 2004, 36, 95-105. | 3.1 | 70 | | 277 | Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals. Applied Physics
Letters, 2004, 85, 4142-4144. | 3.3 | 130 | | 278 | Effects of natural and electrochemical oxidation processes on acoustic waves in porous silicon films. Journal of Applied Physics, 2003, 94, 1243-1247. | 2.5 | 16 | | 279 | Brillouin spectroscopy of acoustic modes in porous silicon films. Physical Review B, 2002, 65, . | 3.2 | 31 |