Hong Jin Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7773299/publications.pdf

Version: 2024-02-01

279 42,816 101 papers citations h-index

288 288 37265
all docs docs citations times ranked citing authors

201

g-index

#	Article	IF	Citations
1	Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345, 1593-1596.	12.6	2,260
2	Recent Advances in Znâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1802564.	14.9	1,595
3	Co ₃ O ₄ Nanowire@MnO ₂ Ultrathin Nanosheet Core/Shell Arrays: A New Class of Highâ€Performance Pseudocapacitive Materials. Advanced Materials, 2011, 23, 2076-2081.	21.0	1,250
4	Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 2016, 7, 12122.	12.8	1,232
5	Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Advanced Science, 2016, 3, 1500286.	11.2	1,001
6	High-Quality Metal Oxide Core/Shell Nanowire Arrays on Conductive Substrates for Electrochemical Energy Storage. ACS Nano, 2012, 6, 5531-5538.	14.6	972
7	Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review. Small, 2007, 3, 1660-1671.	10.0	872
8	Three-Dimensional Graphene Foam Supported Fe ₃ O ₄ Lithium Battery Anodes with Long Cycle Life and High Rate Capability. Nano Letters, 2013, 13, 6136-6143.	9.1	738
9	Semiconductor Nanowires: From Self-Organization to Patterned Growth. Small, 2006, 2, 700-717.	10.0	715
10	Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nature Materials, 2006, 5, 627-631.	27.5	699
11	Nonaqueous Hybrid Lithiumâ€lon and Sodiumâ€lon Capacitors. Advanced Materials, 2017, 29, 1702093.	21.0	699
12	Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy and Environmental Science, 2020, 13, 86-95.	30.8	698
13	Rapid Synthesis of Cobalt Nitride Nanowires: Highly Efficient and Lowâ€Cost Catalysts for Oxygen Evolution. Angewandte Chemie - International Edition, 2016, 55, 8670-8674.	13.8	624
14	A Highâ€Rate and Stable Quasiâ€Solidâ€State Zincâ€Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 2018, 30, e1803181.	21.0	571
15	In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance. Advanced Materials, 2017, 29, 1606814.	21.0	502
16	Graphene Quantum Dots Coated VO ₂ Arrays for Highly Durable Electrodes for Li and Na Ion Batteries. Nano Letters, 2015, 15, 565-573.	9.1	493
17	3D Porous Hierarchical Nickel–Molybdenum Nitrides Synthesized by RF Plasma as Highly Active and Stable Hydrogenâ€Evolutionâ€Reaction Electrocatalysts. Advanced Energy Materials, 2016, 6, 1600221.	19.5	464
18	Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe ₂ /MoS ₂ van der Waals Heterostructures. ACS Nano, 2016, 10, 3852-3858.	14.6	453

#	Article	IF	CITATIONS
19	A V ₂ O ₅ /Conductiveâ€Polymer Core/Shell Nanobelt Array on Threeâ€Dimensional Graphite Foam: A Highâ€Rate, Ultrastable, and Freestanding Cathode for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 5794-5800.	21.0	450
20	Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable Highâ€Rate and Longâ€Cycle Sodiumâ€Ion Storage. Small, 2016, 12, 3048-3058.	10.0	440
21	Epitaxial Growth of Branched αâ€Fe ₂ O ₃ /SnO ₂ Nanoâ€Heterostructures with Improved Lithiumâ€Ion Battery Performance. Advanced Functional Materials, 2011, 21, 2439-2445.	14.9	439
22	A New Type of Porous Graphite Foams and Their Integrated Composites with Oxide/Polymer Core/Shell Nanowires for Supercapacitors: Structural Design, Fabrication, and Full Supercapacitor Demonstrations. Nano Letters, 2014, 14, 1651-1658.	9.1	428
23	Seed-assisted synthesis of highly ordered TiO2@î±-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy and Environmental Science, 2012, 5, 6559.	30.8	421
24	Synthesis of Freeâ€Standing Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application. Small, 2014, 10, 766-773.	10.0	413
25	Three-dimensional tubular arrays of MnO ₂ –NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry, 2012, 22, 2419-2426.	6.7	408
26	Hybrid structure of cobalt monoxide nanowire @ nickel hydroxidenitrate nanoflake aligned on nickel foam for high-rate supercapacitor. Energy and Environmental Science, 2011, 4, 4496.	30.8	386
27	Design Strategies for Highâ€Energyâ€Density Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	383
28	Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS ₂ . Advanced Functional Materials, 2016, 26, 1169-1177.	14.9	376
29	In Situ Grown Epitaxial Heterojunction Exhibits Highâ€Performance Electrocatalytic Water Splitting. Advanced Materials, 2018, 30, e1705516.	21.0	375
30	All Metal Nitrides Solid‧tate Asymmetric Supercapacitors. Advanced Materials, 2015, 27, 4566-4571.	21.0	371
31	Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect:Â The Basic Concept. Nano Letters, 2007, 7, 993-997.	9.1	363
32	Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6, 5008-5048.	5.6	363
33	Strong Electronic Interaction in Dualâ€Cationâ€Incorporated NiSe ₂ Nanosheets with Lattice Distortion for Highly Efficient Overall Water Splitting. Advanced Materials, 2018, 30, e1802121.	21.0	361
34	A Flexible Alkaline Rechargeable Ni/Fe Battery Based on Graphene Foam/Carbon Nanotubes Hybrid Film. Nano Letters, 2014, 14, 7180-7187.	9.1	346
35	A Highâ€Energy Lithiumâ€Ion Capacitor by Integration of a 3D Interconnected Titanium Carbide Nanoparticle Chain Anode with a Pyridineâ€Derived Porous Nitrogenâ€Doped Carbon Cathode. Advanced Functional Materials, 2016, 26, 3082-3093.	14.9	330
36	Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage. Chemistry of Materials, 2010, 22, 212-217.	6.7	311

#	Article	IF	CITATIONS
37	Branched nanowires: Synthesis and energy applications. Nano Today, 2012, 7, 327-343.	11.9	309
38	Recent Advances in Improving the Stability of Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501420.	19.5	303
39	Rationally Designed Hierarchical TiO ₂ @Fe ₂ O ₃ Hollow Nanostructures for Improved Lithium Ion Storage. Advanced Energy Materials, 2013, 3, 737-743.	19.5	296
40	Discerning the Surface and Bulk Recombination Kinetics of Organic–Inorganic Halide Perovskite Single Crystals. Advanced Energy Materials, 2016, 6, 1600551.	19.5	271
41	Highly Stable and Reversible Lithium Storage in SnO ₂ Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition. Nano Letters, 2014, 14, 4852-4858.	9.1	269
42	Recent Progress on Two-Dimensional Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, .	4.9	269
43	Hierarchical Assembly of ZnO Nanostructures on SnO ₂ Backbone Nanowires: Low-Temperature Hydrothermal Preparation and Optical Properties. ACS Nano, 2009, 3, 3069-3076.	14.6	260
44	A High Energy and Power Liâ€lon Capacitor Based on a TiO ₂ Nanobelt Array Anode and a Graphene Hydrogel Cathode. Small, 2015, 11, 1470-1477.	10.0	256
45	A general strategy toward graphene@metal oxide core–shell nanostructures for high-performance lithium storage. Energy and Environmental Science, 2011, 4, 4954.	30.8	255
46	A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and super-long life. Energy and Environmental Science, 2017, 10, 941-949.	30.8	253
47	Three-dimensional graphene and their integrated electrodes. Nano Today, 2014, 9, 785-807.	11.9	251
48	TiO ₂ /(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties. Journal of Physical Chemistry C, 2012, 116, 11956-11963.	3.1	241
49	Porous \hat{l}_{\pm} -Fe 2 O 3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy, 2014, 9, 364-372.	16.0	241
50	Nanoporous Walls on Macroporous Foam: Rational Design of Electrodes to Push Areal Pseudocapacitance. Advanced Materials, 2012, 24, 4186-4190.	21.0	239
51	Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles. Applied Physics Letters, 2010, 96, .	3.3	238
52	Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm, 2011, 13, 3506.	2.6	220
53	Atomically Dispersed Co ₂ –N ₆ and Fe–N ₄ Costructures Boost Oxygen Reduction Reaction in Both Alkaline and Acidic Media. Advanced Materials, 2021, 33, e2104718.	21.0	218
54	Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage. ACS Nano, 2016, 10, 9201-9207.	14.6	213

#	Article	IF	Citations
55	Tubular TiC fibre nanostructures as supercapacitor electrode materials with stable cycling life and wide-temperature performance. Energy and Environmental Science, 2015, 8, 1559-1568.	30.8	210
56	Template-Assisted Large-Scale Ordered Arrays of ZnO Pillars for Optical and Piezoelectric Applications. Small, 2006, 2, 561-568.	10.0	209
57	Quantumâ€Dotâ€Sensitized TiO ₂ Inverse Opals for Photoelectrochemical Hydrogen Generation. Small, 2012, 8, 37-42.	10.0	208
58	Ultrathin Anatase TiO ₂ Nanosheets Embedded with TiO ₂ â€B Nanodomains for Lithiumâ€ion Storage: Capacity Enhancement by Phase Boundaries. Advanced Energy Materials, 2015, 5, 1401756.	19.5	208
59	Porous Hydroxide Nanosheets on Preformed Nanowires by Electrodeposition: Branched Nanoarrays for Electrochemical Energy Storage. Chemistry of Materials, 2012, 24, 3793-3799.	6.7	201
60	Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1824-1828.	8.0	198
61	Controllable Growth of Conducting Polymers Shell for Constructing High-Quality Organic/Inorganic Core/Shell Nanostructures and Their Optical-Electrochemical Properties. Nano Letters, 2013, 13, 4562-4568.	9.1	197
62	Flexible Quasiâ€Solidâ€State Sodiumâ€Ion Capacitors Developed Using 2D Metal–Organicâ€Framework Array Reactor. Advanced Energy Materials, 2018, 8, 1702769.	as 19.5	195
63	Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy, 2015, 13, 658-669.	16.0	187
64	Ordered Array of Gold Semishells on TiO ₂ Spheres: An Ultrasensitive and Recyclable SERS Substrate. ACS Applied Materials & Substrate. ACS Applied	8.0	186
65	Hollow core–shell nanostructure supercapacitor electrodes: gap matters. Energy and Environmental Science, 2012, 5, 9085.	30.8	184
66	Tipâ€Enhanced Electric Field: A New Mechanism Promoting Mass Transfer in Oxygen Evolution Reactions. Advanced Materials, 2021, 33, e2007377.	21.0	179
67	From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story. Journal of Energy Chemistry, 2021, 54, 194-201.	12.9	171
68	Ultrathin nickel hydroxidenitrate nanoflakes branched on nanowire arrays for high-rate pseudocapacitive energy storage. Chemical Communications, 2011, 47, 3436.	4.1	169
69	Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer. Advanced Materials, 2022, 34, e2202382.	21.0	168
70	TiO2 nanotube @ SnO2 nanoflake core–branch arrays for lithium-ion battery anode. Nano Energy, 2014, 4, 105-112.	16.0	165
71	Giant photostriction in organic–inorganic lead halide perovskites. Nature Communications, 2016, 7, 11193.	12.8	164
72	Ultrafastâ€Charging Supercapacitors Based on Cornâ€Like Titanium Nitride Nanostructures. Advanced Science, 2016, 3, 1500299.	11.2	163

#	Article	IF	CITATIONS
73	Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for Highâ€Rate Full Sodium Ion Storage Device. Advanced Energy Materials, 2018, 8, 1800058.	19.5	157
74	Ultrafine Metal Nanoparticles/Nâ€Doped Porous Carbon Hybrids Coated on Carbon Fibers as Flexible and Binderâ€Free Water Splitting Catalysts. Advanced Energy Materials, 2017, 7, 1700220.	19.5	156
75	Vortex ferroelectric domains. Journal of Physics Condensed Matter, 2008, 20, 342201.	1.8	155
76	Yin-Yang Harmony: Metal and Nonmetal Dual-Doping Boosts Electrocatalytic Activity for Alkaline Hydrogen Evolution. ACS Energy Letters, 2018, 3, 2750-2756.	17.4	154
77	VO ₂ nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material. Materials Horizons, 2015, 2, 237-244.	12.2	152
78	High Temperature Thermoelectric Response of Electron-Doped CaMnO ₃ . Chemistry of Materials, 2009, 21, 4653-4660.	6.7	149
79	Perovskite solar cell powered electrochromic batteries for smart windows. Materials Horizons, 2016, 3, 588-595.	12.2	148
80	Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. Nanotechnology, 2005, 16, 913-917.	2.6	147
81	In Situ Hardâ€Template Synthesis of Hollow Bowlâ€Like Carbon: A Potential Versatile Platform for Sodium and Zinc Ion Capacitors. Advanced Energy Materials, 2020, 10, 2002741.	19.5	143
82	Progress and Challenge of Amorphous Catalysts for Electrochemical Water Splitting., 2021, 3, 136-147.		143
83	Poly(2,5â€Dihydroxyâ€1,4â€Benzoquinonyl Sulfide) As an Efficient Cathode for Highâ€Performance Aqueous Zinc–Organic Batteries. Advanced Functional Materials, 2021, 31, 2010049.	14.9	143
84	Strongly Correlated Properties and Enhanced Thermoelectric Response in $Ca < sub > 3 < sub > Co < sub > 4a^2 < sub > M < sub > (m = Fe, Mn, and Cu).$ Chemistry of Materials, 2010, 22, 1155-1163.	6.7	141
85	Novel Metal@Carbon Spheres Core–Shell Arrays by Controlled Selfâ€Assembly of Carbon Nanospheres: A Stable and Flexible Supercapacitor Electrode. Advanced Energy Materials, 2015, 5, 1401709.	19.5	139
86	Controlled synthesis of hierarchical graphene-wrapped TiO ₂ @Co ₃ O ₄ coaxial nanobelt arrays for high-performance lithium storage. Journal of Materials Chemistry A, 2013, 1, 273-281.	10.3	135
87	Rapid Synthesis of Cobalt Nitride Nanowires: Highly Efficient and Lowâ€Cost Catalysts for Oxygen Evolution. Angewandte Chemie, 2016, 128, 8812-8816.	2.0	132
88	Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals. Applied Physics Letters, 2004, 85, 4142-4144.	3.3	130
89	Fracture strength and Young's modulus of ZnO nanowires. Nanotechnology, 2007, 18, 205503.	2.6	130
90	Modulating Builtâ€In Electric Field via Variable Oxygen Affinity for Robust Hydrogen Evolution Reaction in Neutral Media. Angewandte Chemie - International Edition, 2022, 61, .	13.8	130

#	Article	IF	Citations
91	Intercalation Pseudocapacitive Behavior Powers Aqueous Batteries. CheM, 2019, 5, 1359-1361.	11.7	128
92	Photon Upconversion in Heteroâ€nanostructured Photoanodes for Enhanced Nearâ€Infrared Light Harvesting. Advanced Materials, 2013, 25, 1603-1607.	21.0	127
93	Bilayer porous polymer for efficient passive building cooling. Nano Energy, 2021, 85, 105971.	16.0	123
94	3D Interdigital Au/MnO ₂ /Au Stacked Hybrid Electrodes for Onâ€Chip Microsupercapacitors. Small, 2016, 12, 3059-3069.	10.0	119
95	Uncovering loss mechanisms in silver nanoparticle-blended plasmonic organic solar cells. Nature Communications, 2013, 4, 2004.	12.8	118
96	Câ€Plasma of Hierarchical Graphene Survives SnS Bundles for Ultrastable and High Volumetric Naâ€lon Storage. Advanced Materials, 2018, 30, e1804833.	21.0	117
97	Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nature Communications, 2020, 11, 2253.	12.8	112
98	Integrated Photoâ€Supercapacitor Based on PEDOT Modified Printable Perovskite Solar Cell. Advanced Materials Technologies, 2016, 1, 1600074.	5.8	110
99	Well-ordered ZnO nanowire arrays on GaN substrate fabricated via nanosphere lithography. Journal of Crystal Growth, 2006, 287, 34-38.	1.5	108
100	Solution Transformation of Cu ₂ O into CuInS ₂ for Solar Water Splitting. Nano Letters, 2015, 15, 1395-1402.	9.1	108
101	Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. Materials Horizons, 2017, 4, 885-894.	12.2	108
102	Mechanistic Insights of Mg ²⁺ â€Electrolyte Additive for Highâ€Energy and Longâ€Life Zincâ€lon Hybrid Capacitors. Advanced Energy Materials, 2021, 11, 2101158.	19.5	108
103	Self-branched α-MnO ₂ ∬-MnO ₂ heterojunction nanowires with enhanced pseudocapacitance. Materials Horizons, 2017, 4, 415-422.	12.2	105
104	Enhanced Lithium Storage Performance of CuO Nanowires by Coating of Graphene Quantum Dots. Advanced Materials Interfaces, 2015, 2, 1400499.	3.7	102
105	Intercalation Na-ion storage in two-dimensional MoS2-xSex and capacity enhancement by selenium substitution. Energy Storage Materials, 2018, 14, 136-142.	18.0	102
106	Thermal Selfâ€Protection of Zincâ€ion Batteries Enabled by Smart Hygroscopic Hydrogel Electrolytes. Advanced Energy Materials, 2020, 10, 2002898.	19.5	102
107	ZnO-based ternary compound nanotubes and nanowires. Journal of Materials Chemistry, 2009, 19, 885-900.	6.7	101
108	High-mass loading V3O7·H2O nanoarray for Zn-ion battery: New synthesis and two-stage ion intercalation chemistry. Nano Energy, 2021, 83, 105835.	16.0	100

#	Article	IF	Citations
109	Monolayers of WxMo1â^'xS2 alloy heterostructure with in-plane composition variations. Applied Physics Letters, 2015, 106, .	3.3	99
110	Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Materials, 2020, 25, 114-123.	18.0	99
111	Van der Waals p–n Junction Based on an Organic–Inorganic Heterostructure. Advanced Functional Materials, 2015, 25, 5865-5871.	14.9	98
112	Vapour-transport-deposition growth of ZnO nanostructures: switch betweenc-axial wires anda-axial belts by indium doping. Nanotechnology, 2006, 17, S231-S239.	2.6	97
113	Reunderstanding the Reaction Mechanism of Aqueous Zn–Mn Batteries with Sulfate Electrolytes: Role of the Zinc Sulfate Hydroxide. Advanced Materials, 2022, 34, e2109092.	21.0	97
114	On the growth mechanism and optical properties of ZnO multi-layer nanosheets. Applied Physics A: Materials Science and Processing, 2004, 79, 1895-1900.	2.3	96
115	Laser-Interference Lithography Tailored for Highly Symmetrically Arranged ZnO Nanowire Arrays. Small, 2007, 3, 76-80.	10.0	95
116	A Novel Photoanode with Threeâ€Dimensionally, Hierarchically Ordered Nanobushes for Highly Efficient Photoelectrochemical Cells. Advanced Materials, 2012, 24, 4157-4162.	21.0	93
117	An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. CheM, 2022, 8, 924-946.	11.7	92
118	Electrospun Fe2O3–carbon composite nanofibers as durable anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 10835.	10.3	91
119	Ferroelectric Transistors with Nanowire Channel: Toward Nonvolatile Memory Applications. ACS Nano, 2009, 3, 700-706.	14.6	89
120	Singleâ€Crystalline, Metallic TiC Nanowires for Highly Robust and Wideâ€Temperature Electrochemical Energy Storage. Small, 2017, 13, 1602742.	10.0	89
121	Ferroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectric. Nature Materials, 2021, 20, 612-617.	27.5	87
122	Hydrated Eutectic Electrolyte with Ligandâ€Oriented Solvation Shell to Boost the Stability of Zinc Battery. Advanced Functional Materials, 2022, 32, .	14.9	87
123	Correlation between the Structural Distortions and Thermoelectric Characteristics in La $<$ sub $>$ 1â $^2<$ i $>×<$ 1 $>×<$ 1 $>×<$ 1 $>×<$ 1 $>×<$ 1 $>×<$ 1 $>×<$ 1 $>×<$ 2 $>××<$ 1 $>×<$ 1 $>××<$ 1 $>××<$ 1 $>××<$ 1 $>×××<$ 1 $>××××××××××××××××××××××××××××××××××××$	4.0	86
124	Applications of atomic layer deposition in solar cells. Nanotechnology, 2015, 26, 064001.	2.6	86
125	Integrated photoelectrochemical energy storage: solar hydrogen generation and supercapacitor. Scientific Reports, 2012, 2, 981.	3.3	85
126	Highly Ordered Arrays of Particleâ€inâ€Bowl Plasmonic Nanostructures for Surfaceâ€Enhanced Raman Scattering. Small, 2012, 8, 2548-2554.	10.0	84

#	Article	IF	Citations
127	Flexible Pseudocapacitive Electrochromics via Inkjet Printing of Additiveâ€Free Tungsten Oxide Nanocrystal Ink. Advanced Energy Materials, 2020, 10, 2000142.	19.5	82
128	Metal organic framework (MOF) in aqueous energy devices. Materials Today, 2021, 48, 270-284.	14.2	82
129	Homogeneous Photosensitization of Complex TiO2 Nanostructures for Efficient Solar Energy Conversion. Scientific Reports, 2012, 2, 451.	3.3	81
130	Composition-Graded Zn _{<i>x</i>} Cd _{_{1â€"<i>x</i>}} <fsub>Se@ZnO Coreâ€"Shell Nanowire Array Electrodes for Photoelectrochemical Hydrogen Generation. Journal of Physical Chemistry C, 2012, 116, 3802-3807.</fsub>	3.1	81
131	High-Index-Faceted Ni3S2 Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting. Nano-Micro Letters, 2019, 11, 12.	27.0	81
132	Fluorine-Induced Dual Defects in Cobalt Phosphide Nanosheets Enhance Hydrogen Evolution Reaction Activity., 2020, 2, 736-743.		81
133	Atomic layer deposition for nanofabrication and interface engineering. Nanoscale, 2012, 4, 1522.	5.6	80
134	Fabrication of metal oxide nanobranches on atomic-layer-deposited TiO2 nanotube arrays and their application in energy storage. Nanoscale, 2013, 5, 6040.	5.6	79
135	Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance. Journal of Materials Chemistry A, 2016, 4, 17801-17808.	10.3	79
136	Combining Co ₃ S ₄ and Ni:Co ₃ S ₄ nanowires as efficient catalysts for overall water splitting: an experimental and theoretical study. Nanoscale, 2019, 11, 2202-2210.	5.6	79
137	Integration of Energy Harvesting and Electrochemical Storage Devices. Advanced Materials Technologies, 2017, 2, 1700182.	5.8	78
138	Hierarchically porous three-dimensional electrodes of CoMoO ₄ and ZnCo ₂ O ₄ and their high anode performance for lithium ion batteries. Nanoscale, 2014, 6, 10556.	5.6	77
139	Inâ€Plane Ferroelectricity in Thin Flakes of Van der Waals Hybrid Perovskite. Advanced Materials, 2018, 30, e1803249.	21.0	76
140	Growth mechanism and characterization of zinc oxide microcages. Solid State Communications, 2004, 130, 517-521.	1.9	75
141	Atomic Layer Deposition of Amorphous TiO ₂ on Carbon Nanotube Networks and Their Superior Li and Na Ion Storage Properties. Advanced Materials Interfaces, 2016, 3, 1600375.	3.7	75
142	ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling. Applied Physics Letters, 2007, 90, 143116.	3.3	73
143	Understanding the Enhancement Mechanisms of Surface Plasmonâ€Mediated Photoelectrochemical Electrodes: A Case Study on Au Nanoparticle Decorated TiO ₂ Nanotubes. Advanced Materials Interfaces, 2015, 2, 1500169.	3.7	7 3
144	A low-cost and one-step synthesis of N-doped monolithic quasi-graphene films with porous carbon frameworks for Li-ion batteries. Nano Energy, 2015, 17, 43-51.	16.0	73

#	Article	IF	Citations
145	Ferroelectric nanotubes fabricated using nanowires as positive templates. Applied Physics Letters, 2006, 89, 172907.	3.3	72
146	Magnetic-field-induced rapid synthesis of defect-enriched Ni-Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst. Nano Energy, 2018, 51, 349-357.	16.0	72
147	Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers. Superlattices and Microstructures, 2004, 36, 95-105.	3.1	70
148	Partial Nitridationâ€Induced Electrochemistry Enhancement of Ternary Oxide Nanosheets for Fiber Energy Storage Device. Advanced Energy Materials, 2018, 8, 1800685.	19.5	70
149	Single-crystalline MgAl2O4spinel nanotubes using a reactive and removable MgO nanowire template. Nanotechnology, 2006, 17, 5157-5162.	2.6	69
150	Continuous Tuning of Au–Cu ₂ O Janus Nanostructures for Efficient Charge Separation. Angewandte Chemie - International Edition, 2020, 59, 22246-22251.	13.8	69
151	Fine Structure of Ultraviolet Photoluminescence of Tin Oxide Nanowires. Journal of Physical Chemistry C, 2010, 114, 3407-3410.	3.1	68
152	Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures. Nanoscale Research Letters, 2010, 5, 1836-1840.	5.7	67
153	Highly stable and flexible Li-ion battery anodes based on TiO ₂ coated 3D carbon nanostructures. Journal of Materials Chemistry A, 2015, 3, 15394-15398.	10.3	65
154	Al ₂ O ₃ â€Assisted Confinement Synthesis of Oxide/Carbon Hollow Composite Nanofibers and Application in Metalâ€ion Capacitors. Small, 2020, 16, e2001950.	10.0	65
155	Multitwinned Spinel Nanowires by Assembly of Nanobricks <i>via</i> Oriented Attachment: A Case Study of Zn ₂ TiO ₄ . ACS Nano, 2009, 3, 555-562.	14.6	64
156	A mesoporous nickel counter electrode for printable and reusable perovskite solar cells. Nanoscale, 2015, 7, 13363-13368.	5.6	64
157	Coupling and Interlayer Exciton in Twistâ€Stacked WS ₂ Bilayers. Advanced Optical Materials, 2015, 3, 1600-1605.	7. 3	63
158	Terahertz Emission from Tubular Pb(Zr,Ti)O ₃ Nanostructures. Nano Letters, 2008, 8, 4404-4409.	9.1	62
159	Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy, 2016, 20, 244-253.	16.0	62
160	Silica-modified SnO2-graphene "slime―for self-enhanced li-ion battery anode. Nano Energy, 2017, 34, 449-455.	16.0	62
161	Nitrogenâ€Plasmaâ€Activated Hierarchical Nickel Nitride Nanocorals for Energy Applications. Small, 2017, 13, 1604265.	10.0	62
162	Ultrathin CNTs@FeOOH nanoflake core/shell networks as efficient electrocatalysts for the oxygen evolution reaction. Materials Chemistry Frontiers, 2017, 1, 709-715.	5.9	62

#	Article	IF	Citations
163	Atomicâ€Layerâ€Depositionâ€Assisted Formation of Carbon Nanoflakes on Metal Oxides and Energy Storage Application. Small, 2014, 10, 300-307.	10.0	60
164	Plasma for Rapid Conversion Reactions and Surface Modification of Electrode Materials. Small Methods, 2017, 1, 1700164.	8.6	60
165	Amorphous VO ₂ : A Pseudocapacitive Platform for Highâ€Rate Symmetric Batteries. Advanced Materials, 2021, 33, e2103736.	21.0	60
166	A brief review on plasma for synthesis and processing of electrode materials. Materials Today Nano, 2018, 3, 28-47.	4.6	59
167	Single-Crystalline Cu ₄ Bi ₄ S ₉ Nanoribbons: Facile Synthesis, Growth Mechanism, and Surface Photovoltaic Properties. Chemistry of Materials, 2011, 23, 1299-1305.	6.7	58
168	Triple-layered nanostructured WO ₃ photoanodes with enhanced photocurrent generation and superior stability for photoelectrochemical solar energy conversion. Nanoscale, 2014, 6, 13457-13462.	5.6	57
169	2D Black Phosphorus/SrTiO ₃ â€Based Programmable Photoconductive Switch. Advanced Materials, 2016, 28, 7768-7773.	21.0	57
170	Dualâ€Carbon Batteries: Materials and Mechanism. Small, 2020, 16, e2002803.	10.0	57
171	Doping-Induced Metalâ^'Insulator Transition and the Thermal Transport Properties in Ca _{3â^'<i>x</i>} Y _{<i>x</i>} Co ₄ O ₉ . Journal of Physical Chemistry C, 2010, 114, 5174-5181.	3.1	56
172	Ultrathin MoSe ₂ @N-doped carbon composite nanospheres for stable Na-ion storage. Nanotechnology, 2017, 28, 42LT01.	2.6	55
173	Efficient oxygen reduction reaction using mesoporous Ni-doped Co ₃ O ₄ nanowire array electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 18372-18379.	10.3	54
174	Self-assembly of ZnO nanowires and the spatial resolved characterization of their luminescence. Nanotechnology, 2004, 15, 1401-1404.	2.6	52
175	Atomicâ€Layerâ€Deposited Amorphous MoS ₂ for Durable and Flexible Li–O ₂ Batteries. Small Methods, 2020, 4, 1900274.	8.6	52
176	Conformal Cu ₂ S-coated Cu ₂ O nanostructures grown by ion exchange reaction and their photoelectrochemical properties. Nanotechnology, 2015, 26, 185401.	2.6	51
177	Light-Tunable 1T-TaS ₂ Charge-Density-Wave Oscillators. ACS Nano, 2018, 12, 11203-11210.	14.6	51
178	Inkjet and Extrusion Printing for Electrochemical Energy Storage: A Minireview. Advanced Materials Technologies, 2020, 5, .	5.8	51
179	Facile synthesis and shape evolution of highly symmetric 26-facet polyhedral microcrystals of Cu2O. CrystEngComm, 2009, 11 , 2291 .	2.6	50
180	Novel Silicon Nanohemisphereâ€Array Solar Cells with Enhanced Performance. Small, 2011, 7, 3138-3143.	10.0	50

#	Article	IF	Citations
181	Inverse opals coupled with nanowires as photoelectrochemical anode. Nano Energy, 2012, 1, 322-327.	16.0	50
182	Diffusionâ€Facilitated Fabrication of Goldâ€Decorated Zn ₂ SiO ₄ Nanotubes by a Oneâ€Step Solidâ€State Reaction. Angewandte Chemie - International Edition, 2010, 49, 1442-1446.	13.8	48
183	Stimulated emission from ZnO nanorods. Physica Status Solidi (B): Basic Research, 2006, 243, 853-857.	1.5	47
184	Self-Induced Uniaxial Strain in MoS ₂ Monolayers with Local van der Waals-Stacked Interlayer Interactions. ACS Nano, 2015, 9, 2704-2710.	14.6	47
185	Design Strategies for Highâ€Energyâ€Density Aqueous Zinc Batteries. Angewandte Chemie, 2022, 134, .	2.0	47
186	Efficiency Enhancement in Bulk-Heterojunction Solar Cells Integrated with Large-Area Ag Nanotriangle Arrays. Journal of Physical Chemistry C, 2012, 116, 14820-14825.	3.1	46
187	Kinetics of Stop-Flow Atomic Layer Deposition for High Aspect Ratio Template Filling through Photonic Band Gap Measurements. Journal of Physical Chemistry C, 2010, 114, 14843-14848.	3.1	44
188	Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Letters, 2017, 17, 6475-6480.	9.1	44
189	PtPdAg Hollow Nanodendrites: Templateâ€Free Synthesis and High Electrocatalytic Activity for Methanol Oxidation Reaction. Small Methods, 2020, 4, 1900709.	8.6	44
190	Local luminescence of ZnO nanowire-covered surface: A cathodoluminescence microscopy study. Applied Physics Letters, 2005, 86, 023113.	3.3	43
191	Biaxially Strained MoS ₂ Nanoshells with Controllable Layers Boost Alkaline Hydrogen Evolution. Advanced Materials, 2022, 34, e2202195.	21.0	43
192	Improved Thermoelectric Properties of La _{$1\hat{a}^2$<i>x</i>xxxxxxx<}	3.1	42
193	Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to boost supercapacitive performance. Nanoscale, 2014, 6, 5691-5697.	5.6	42
194	Printed Zinc Paper Batteries. Advanced Science, 2022, 9, e2103894.	11.2	42
195	3D zincophilic micro-scaffold enables stable Zn deposition. Energy Storage Materials, 2022, 51, 259-265.	18.0	42
196	Ultraviolet Electroluminescence from Randomly Assembled <i>n</i> -SnO ₂ Nanowires <i>p</i> -GaN:Mg Heterojunction. ACS Applied Materials & Interfaces, 2010, 2, 1191-1194.	8.0	41
197	Preparation of CoAl layered double hydroxide nanoflake arrays and their high supercapacitance performance. Applied Clay Science, 2014, 102, 28-32.	5.2	41
198	Enhancing bifunctionality of CoN nanowires by Mn doping for long-lasting Zn-air batteries. Science China Chemistry, 2020, 63, 890-896.	8.2	41

#	Article	IF	CITATIONS
199	Green synthesis of vertical graphene nanosheets and their application in high-performance supercapacitors. RSC Advances, 2016, 6, 23968-23973.	3.6	39
200	Substrateâ€Friendly Growth of Largeâ€Sized Ni(OH) ₂ Nanosheets for Flexible Electrochromic Films. Small, 2017, 13, 1700084.	10.0	39
201	Prereduction of Metal Oxides via Carbon Plasma Treatment for Efficient and Stable Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1800340.	10.0	39
202	Electronegativityâ€Induced Charge Balancing to Boost Stability and Activity of Amorphous Electrocatalysts. Advanced Materials, 2022, 34, e2100537.	21.0	39
203	Oxide Nanostructures Hyperbranched with Thin and Hollow Metal Shells for Highâ€Performance Nanostructured Battery Electrodes. Small, 2014, 10, 2419-2428.	10.0	37
204	High-content of sulfur uniformly embedded in mesoporous carbon: a new electrodeposition synthesis and an outstanding lithium–sulfur battery cathode. Journal of Materials Chemistry A, 2017, 5, 5905-5911.	10.3	37
205	Self-Assembled Porous ZnS Nanospheres with High Photocatalytic Performance. Science of Advanced Materials, 2013, 5, 1329-1336.	0.7	36
206	Conformal oxide coating of carbon nanotubes. Applied Physics Letters, 2008, 92, .	3.3	34
207	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mtext>La</mml:mtext><mml:mrow><mml:mi mathvariant="normal">x</mml:mi </mml:mrow></mml:msub><mml:msub><mml:mtext>Ca</mml:mtext><mml:mathvariant="normal">x</mml:mathvariant="normal"></mml:msub></mml:mrow> <mml:msub><mml:mtext>MnO</mml:mtext><mm< td=""><td>nrow>< nl:mrow><</td><td>mi:mn>1mml:mn>3</td></mm<></mml:msub>	nrow>< nl:mrow><	mi:mn>1mml:mn>3
208	Stretc. Physical Review B, 2011, 83, . Optoelectronic properties of atomically thin ReSSe with weak interlayer coupling. Nanoscale, 2016, 8, 5826-5834.	5.6	32
209	Aligned Arrays of Na ₂ Ti ₃ O ₇ Nanobelts and Nanowires on Carbon Nanofiber as Highâ€Rate and Longâ€Cycling Anodes for Sodiumâ€Ion Hybrid Capacitors. Small Structures, 2021, 2, 2000073.	12.0	32
210	Brillouin spectroscopy of acoustic modes in porous silicon films. Physical Review B, 2002, 65, .	3.2	31
211	ZnCdO/ZnO Coaxial Multiple Quantum Well Nanowire Heterostructures and Optical Properties. Journal of Physical Chemistry C, 2010, 114, 3863-3868.	3.1	31
212	A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. Nano Energy, 2016, 26, 1-6.	16.0	31
213	Solution heteroepitaxial growth of dendritic SnO ₂ /TiO ₂ hybrid nanowires. Journal of Materials Research, 2011, 26, 2254-2260.	2.6	30
214	Temperature-dependent terahertz conductivity of tin oxide nanowire films. Journal Physics D: Applied Physics, 2012, 45, 465101.	2.8	30
215	Randomly packed n-SnO2 nanorods/p-SiC heterojunction light-emitting diodes. Applied Physics Letters, 2009, 95, 201104.	3.3	29
216	Air Stable Organic–Inorganic Perovskite Nanocrystals@Polymer Nanofibers and Waveguide Lasing. Small, 2020, 16, e2004409.	10.0	29

#	Article	IF	CITATIONS
217	Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors. ChemNanoMat, 2015, 1, 458-476.	2.8	28
218	Multiple electrical breakdowns and electrical annealing using high current approximating breakdown current of silver nanowire network. Nanotechnology, 2016, 27, 025703.	2.6	28
219	Robust, High-Density Zinc Oxide Nanoarrays by Nanoimprint Lithography-Assisted Area-Selective Atomic Layer Deposition. Journal of Physical Chemistry C, 2012, 116, 23729-23734.	3.1	26
220	Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer. Nanophotonics, 2013, 2, 153-160.	6.0	26
221	Highly effective SERS substrates based on an atomic-layer-deposition-tailored nanorod array scaffold. Nanoscale, 2011, 3, 3627.	5.6	25
222	Energy Storage: Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials (Adv. Mater. 18/2011). Advanced Materials, 2011, 23, 2075-2075.	21.0	25
223	A Microâ€pulse Process of Atomic Layer Deposition of Iron Oxide Using Ferrocene and Ozone Precursors and Tiâ€Doping. Chemical Vapor Deposition, 2013, 19, 104-110.	1.3	25
224	Molecular Engineering toward Coexistence of Dielectric and Optical Switch Behavior in Hybrid Perovskite Phase Transition Material. Journal of Physical Chemistry A, 2018, 122, 6416-6423.	2. 5	25
225	Singleâ€Crystalline TiO ₂ (B) Nanobelts with Unusual Large Exposed {100} Facets and Enhanced Liâ€Storage Capacity. Advanced Functional Materials, 2021, 31, 2002187.	14.9	25
226	Thermal conductivity of electron-doped CaMnO3 perovskites: Local lattice distortions and optical phonon thermal excitation. Acta Materialia, 2010, 58, 6306-6316.	7.9	24
227	Pseudocapacitor Electrodes: Regular Pores Matter. Joule, 2019, 3, 317-319.	24.0	23
228	Aqueous Zn2+/Na+ dual-salt batteries with stable discharge voltage and high columbic efficiency by systematic electrolyte regulation. Science China Chemistry, 2022, 65, 399-407.	8.2	23
229	Ultrafast Exciton Dynamics and Twoâ€Photon Pumped Lasing from ZnSe Nanowires. Advanced Optical Materials, 2013, 1, 319-326.	7.3	22
230	NiMoFe nanoparticles@MoO ₂ nano-pillar arrays as bifunctional electrodes for ultra-low-voltage overall water splitting. Journal of Materials Chemistry A, 2022, 10, 3760-3770.	10.3	22
231	Atomic-layer-deposition alumina induced carbon on porous Ni _x Co _{1 â^' x} O nanonets for enhanced pseudocapacitive and Li-ion storage performance. Nanotechnology, 2015, 26, 014001.	2.6	21
232	Room-temperature continuous-wave vertical-cavity surface-emitting lasers based on 2D layered organic–inorganic hybrid perovskites. APL Materials, 2021, 9, 071106.	5.1	21
233	Photoluminescence via gap plasmons between single silver nanowires and a thin gold film. Nanoscale, 2013, 5, 12086.	5.6	20
234	Solvent engineering for fast growth of centimetric high-quality CH ₃ NH ₃ PbI ₃ perovskite single crystals. New Journal of Chemistry, 2016, 40, 7261-7264.	2.8	20

#	Article	IF	CITATIONS
235	The origin of different magnetic properties in nanosized Ca0.82La0.18MnO3: Wires versus particles. Applied Physics Letters, 2011, 98, 142502.	3.3	19
236	Room-temperature electrically driven phase transition of two-dimensional 1T-TaS ₂ layers. Nanoscale, 2017, 9, 2436-2441.	5.6	19
237	"lsofacet―Anatase TiO ₂ Microcages: Topotactic Synthesis and Ultrastable Liâ€lon Storage. Advanced Materials Interfaces, 2015, 2, 1500210.	3.7	18
238	Understanding cathode materials in aqueous zinc–organic batteries. Current Opinion in Electrochemistry, 2021, 30, 100799.	4.8	18
239	A low-temperature evaporation route for ZnO nanoneedles and nanosaws. Applied Physics A: Materials Science and Processing, 2005, 80, 457-460.	2.3	17
240	Sr1â^xLaxTiO3 nanoparticles: Synthesis, characterization and enhanced thermoelectric response. Scripta Materialia, 2011, 65, 190-193.	5.2	17
241	Lowâ€Field Magnetoresistance Effect in Core–Shell Structured La _{0.7} Sr _{0.3} CoO ₃ Nanoparticles. Small, 2012, 8, 1060-1065.	10.0	17
242	Energy Storage Performance Enhancement by Surface Engineering of Electrode Materials. Advanced Materials Interfaces, 2016, 3, 1600430.	3.7	17
243	Effects of natural and electrochemical oxidation processes on acoustic waves in porous silicon films. Journal of Applied Physics, 2003, 94, 1243-1247.	2.5	16
244	Influence of Y3+ doping on the high-temperature transport mechanism and thermoelectric response of misfit-layered Ca3Co4O9. Applied Physics A: Materials Science and Processing, 2010, 99, 451-458.	2.3	16
245	Orbital ordering-driven ferromagnetism in LaCoO3 nanowires. Journal of Applied Physics, 2010, 108, .	2.5	16
246	Hyperbranched TiO ₂ â€"CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes. Nanotechnology, 2018, 29, 335404.	2.6	16
247	Surface Reaction of ZnO Nanowires with Electron-Beam Generated Alumina Vapor. Journal of Physical Chemistry C, 2008, 112, 6770-6774.	3.1	15
248	The morphology of Au@MgO nanopeapods. Nanotechnology, 2009, 20, 455603.	2.6	15
249	Photoresponse: Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS ₂ (Adv. Funct. Mater. 8/2016). Advanced Functional Materials, 2016, 26, 1146-1146.	14.9	15
250	Hierarchical vertical graphene nanotube arrays via universal carbon plasma processing strategy: A platform for high-rate performance battery electrodes. Energy Storage Materials, 2019, 18, 462-469.	18.0	14
251	Modulating Builtâ€In Electric Field via Variable Oxygen Affinity for Robust Hydrogen Evolution Reaction in Neutral Media. Angewandte Chemie, 2022, 134, .	2.0	14
252	High-temperature lasing characteristics of randomly assembled SnO2 backbone nanowires coated with ZnO nanofins. Journal of Applied Physics, 2009, 106, 123105.	2.5	13

#	Article	IF	CITATIONS
253	Solution-process coating of vertical ZnO nanowires with ferroelectrics. Nanotechnology, 2008, 19, 375302.	2.6	11
254	Surface plasmon induced exciton redistribution in ZnCdO/ZnO coaxial multiquantum-well nanowires. Applied Physics Letters, 2010, 97, .	3.3	11
255	Electrochemical Impedance Analysis of Thermogalvanic Cells. Chemical Research in Chinese Universities, 2020, 36, 420-424.	2.6	9
256	Concurrent H ₂ Generation and Formate Production Assisted by CO ₂ Absorption in One Electrolyzer. Small Methods, 2021, 5, e2100871.	8.6	9
257	LIQUID SOURCE MISTED CHEMICAL DEPOSITION PROCESS OF THREE-DIMENSIONAL NANO-FERROELECTRICS WITH SUBSTRATE HEATING. Integrated Ferroelectrics, 2007, 95, 180-186.	0.7	8
258	Plasmonic Nanoclocks. Nano Letters, 2014, 14, 5162-5169.	9.1	8
259	Wavelength tunable electroluminescence from randomly assembled n-CdS _x Se _{1â°'x} nanowires/p ⁺ -SiC heterojunction. Nanoscale, 2012, 4, 1467-1470.	5.6	7
260	Percolative Nano-Sized Phase Separation in Mix-Valent Manganites. Journal of Physical Chemistry C, 2010, 114, 1491-1497.	3.1	5
261	Inverse Opals: Quantum-Dot-Sensitized TiO2 Inverse Opals for Photoelectrochemical Hydrogen Generation (Small 1/2012). Small, 2012, 8, 36-36.	10.0	4
262	New way to multi-shelled hollow spheres for robust battery electrode. Inorganic Chemistry Frontiers, 2016, 3, 1004-1006.	6.0	4
263	C-plasma derived precise volumetric buffering for high-rate and stable alloying-type energy storage. Nano Energy, 2021, 80, 105557.	16.0	4
264	THz Emission from PZT Nanotubes. Ferroelectrics, 2009, 378, 79-83.	0.6	3
265	Critical behavior and the absence of glass state in ferromagnetic La0.7Ca0.3CoO3 nanowires. Acta Materialia, 2012, 60, 1238-1245.	7.9	3
266	Editorial for nanoscale themed issue "Recent Advance in Semiconductor Nanowire Research― Nanoscale, 2012, 4, 1410.	5.6	2
267	Boosting alkaline water electrolysis by asymmetric temperature modulation. Applied Physics Letters, 2021, 119, .	3.3	2
268	From Ordered Arrays of Nanowires to Controlled Solid State Reactions. Advances in Solid State Physics, 2009, , 3-12.	0.8	1
269	Exciton Dynamics: Ultrafast Exciton Dynamics and Twoâ€Photon Pumped Lasing from ZnSe Nanowires (Advanced Optical Materials 4/2013). Advanced Optical Materials, 2013, 1, 276-276.	7.3	1
270	Metal nanotube membranes and their lithographic applications. , 2006, , .		0

#	Article	IF	CITATIONS
271	THz REFLECTIVITY SPECTROSCOPY OF TUBULAR PZT NANOSTRUCTURES. Integrated Ferroelectrics, 2009, 106, 17-22.	0.7	o
272	Solar Cells: Novel Silicon Nanohemisphere-Array Solar Cells with Enhanced Performance (Small) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 7
273	Light Harvesting: Photon Upconversion in Heteroâ€nanostructured Photoanodes for Enhanced Nearâ€Infrared Light Harvesting (Adv. Mater. 11/2013). Advanced Materials, 2013, 25, 1656-1656.	21.0	O
274	Semiconductor Nanowire Heterostructures: Controlled Growth and Optoelectronic Applications. Nanoscience and Technology, 2012, , 137-166.	1.5	0
275	(Invited) Bi-Functional Electrocatalysts for Water Splitting and Metal-lon Batteries. ECS Meeting Abstracts, 2019, , .	0.0	O
276	(Invited) Nanoarray Electrodes for High-Rate Thin-Film Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
277	(Invited) Doping and Composition Optimization of Electrocatalysts for Water Splitting and Metal-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 678-678.	0.0	O
278	(Invited) Nanoarray Cathode Design for Durable Zn Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 188-188.	0.0	0
279	Bamboo Weaving Inspired Design of a Carbonaceous Electrode with Exceptionally High Volumetric Capacity. Nano Letters, 2022, 22, 954-962.	9.1	O