
Peter S Toth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7773016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural Features Dictate the Photoelectrochemical Activities of Two-Dimensional MoSe ₂ and WSe ₂ Nanostructures. Journal of Physical Chemistry C, 2021, 125, 7701-7710.	1.5	7
2	Dependence of the polycarbonate mechanical performances on boron nitride flakes morphology. JPhys Materials, 2021, 4, 045002.	1.8	4
3	Visible Light-Generated Antiviral Effect on Plasmonic Ag-TiO2-Based Reactive Nanocomposite Thin Film. Frontiers in Bioengineering and Biotechnology, 2021, 9, 709462.	2.0	6
4	Electron Tunneling through Boron Nitride Confirms Marcus–Hush Theory Predictions for Ultramicroelectrodes. ACS Nano, 2020, 14, 993-1002.	7.3	16
5	Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited. Journal of Physical Chemistry C, 2019, 123, 11677-11685.	1.5	67
6	Assembly and electrochemistry of carbon nanomaterials at the liquid-liquid interface. Electrochimica Acta, 2019, 308, 307-316.	2.6	7
7	Complementary nature of voltabsorptiometric, nanogravimetric and in situ conductance results for the interpretation of conducting polymers' redox transformation. Synthetic Metals, 2018, 246, 260-266.	2.1	6
8	Liquidâ€Phase Exfoliated Indium–Selenide Flakes and Their Application in Hydrogen Evolution Reaction. Small, 2018, 14, e1800749.	5.2	90
9	Exfoliation of natural van der Waals heterostructures to a single unit cell thickness. Nature Communications, 2017, 8, 14410.	5.8	93
10	Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids. Journal of the American Chemical Society, 2017, 139, 6682-6692.	6.6	120
11	From two-dimensional materials to their heterostructures: An electrochemist's perspective. Applied Materials Today, 2017, 8, 68-103.	2.3	212
12	Electrochemical Investigation of Adsorption of Single-Wall Carbon Nanotubes at a Liquid/Liquid Interface. ChemistryOpen, 2017, 6, 57-63.	0.9	6
13	Hydrogen evolution and capacitance behavior of Au/Pd nanoparticle-decorated graphene heterostructures. Applied Materials Today, 2017, 8, 125-131.	2.3	20
14	Interfacial doping of carbon nanotubes at the polarisable organic/water interface: a liquid/liquid pseudo-capacitor. Journal of Materials Chemistry A, 2016, 4, 7365-7371.	5.2	16
15	Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties. RSC Advances, 2016, 6, 97931-97940.	1.7	71
16	Asymmetric MoS ₂ /Graphene/Metal Sandwiches: Preparation, Characterization, and Application. Advanced Materials, 2016, 28, 8256-8264.	11.1	64
17	Photoelectrochemistry of Pristine Mono- and Few-Layer MoS ₂ . Nano Letters, 2016, 16, 2023-2032.	4.5	107
18	Preparation of low-dimensional carbon material-based metal nanocomposites using a polarizable organic/water interface. Journal of Materials Research, 2015, 30, 2679-2687.	1.2	11

Peter S Toth

#	Article	IF	CITATIONS
19	Electron transfer kinetics on natural crystals of MoS ₂ and graphite. Physical Chemistry Chemical Physics, 2015, 17, 17844-17853.	1.3	57
20	Mechanical stability of substrate-bound graphene in contact with aqueous solutions. 2D Materials, 2015, 2, 024011.	2.0	12
21	Novel organic solvents for electrochemistry at the liquid/liquid interface. Analyst, The, 2015, 140, 1947-1954.	1.7	21
22	Development of polymer–dopant interactions during electropolymerization, a key factor in determining the redox behaviour of conducting polymers. Journal of Solid State Electrochemistry, 2015, 19, 2891-2896.	1.2	13
23	Symmetric and Asymmetric Decoration of Graphene: Bimetalâ€Graphene Sandwiches. Advanced Functional Materials, 2015, 25, 2899-2909.	7.8	31
24	Controlled preparation of carbon nanotube-conducting polymer composites at the polarisable organic/water interface. Electrochemistry Communications, 2015, 60, 153-157.	2.3	23
25	Functionalization of graphene at the organic/water interface. Chemical Science, 2015, 6, 1316-1323.	3.7	60
26	Electrochemical activity and metal deposition using few-layer graphene and carbon nanotubes assembled at the liquid–liquid interface. Electrochemistry Communications, 2015, 50, 6-10.	2.3	34
27	Electron Transfer Kinetics on Mono- and Multilayer Graphene. ACS Nano, 2014, 8, 10089-10100.	7.3	160
28	Electrochemistry in a drop: a study of the electrochemical behaviour of mechanically exfoliated graphene on photoresist coated silicon substrate. Chemical Science, 2014, 5, 582-589.	3.7	48
29	Electrochemical investigation of chemical vapour deposition monolayer and bilayer graphene on the microscale. Electrochimica Acta, 2013, 110, 9-15.	2.6	32
30	Hyphenated in situ conductance and spectroelectrochemical studies of polyaniline films in strongly acidic solutions. Electrochimica Acta, 2013, 110, 446-451.	2.6	6
31	Electrochemical synthesis and characterization of thiophene conducting polymer in aqueous micellar medium. Journal of Solid State Electrochemistry, 2013, 17, 635-641.	1.2	5
32	On the Unexpected Cation Exchange Behavior, Caused by Covalent Bond Formation between PEDOT and Cl [–] Ions: Extending the Conception for the Polymer–Dopant Interactions. Journal of Physical Chemistry B, 2012, 116, 5491-5500.	1.2	26
33	Fast redox switching into the conducting state, related to single mono-cationic/polaronic charge carriers only in cation exchanger type conducting polymers. Electrochemistry Communications, 2012, 18, 16-19.	2.3	14
34	Electrosynthesis and comparative studies on carboxyl-functionalized polythiophene derivatives. Electrochimica Acta, 2011, 56, 3447-3453.	2.6	14
35	Application of classical and new, direct analytical methods for the elucidation of ion movements during the redox transformation of polypyrrole. Journal of Solid State Electrochemistry, 2010, 14, 1967-1973.	1.2	15
36	Application of simultaneous monitoring of the in situ impedance and optical changes on the redox transformation of two polythiophenes: Direct evidence for their non-identical conductance–charge carrier correlation. Electrochemistry Communications, 2010, 12, 958-961.	2.3	16

#	Article	IF	CITATIONS
37	Study on the electrodeposition of organic and inorganic thermoelectric materials for composite preparation. Reaction Kinetics and Catalysis Letters, 2009, 96, 429-436.	0.6	3
38	Combination of in situ UV–Vis-NIR spectro-electrochemical and a.c. impedance measurements: A new, effective technique for studying the redox transformation of conducting electroactive materials. Electrochemistry Communications, 2009, 11, 1947-1950.	2.3	26