Bote Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7772944/publications.pdf

Version: 2024-02-01

		25034	3	31849	
105	10,789	57		101	
papers	citations	h-index		g-index	
105	105	105		11448	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	Citations
1	A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer. Applied Catalysis B: Environmental, 2022, 306, 121071.	20.2	33
2	Activating the oxygen electrocatalytic activity of layer-structured Ca _{0.5} CoO ₂ nanofibers by iron doping. Dalton Transactions, 2022, 51, 3636-3641.	3.3	0
3	An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy and Environmental Science, 2022, 15, 287-295.	30.8	64
4	A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries. Energy and Environmental Science, 2022, 15, 254-264.	30.8	50
5	An Efficient Steamâ€Induced Heterostructured Air Electrode for Protonic Ceramic Electrochemical Cells. Advanced Functional Materials, 2022, 32, .	14.9	47
6	Mangrove Root-Inspired Carbon Nanotube Film for Micro-Direct Methanol Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19897-19906.	8.0	6
7	Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nature Communications, 2022, 13, 2207.	12.8	65
8	Plowing-Extrusion Processes and Performance of Functional Surface Structures of Copper Current Collectors for Lithium-Ion Batteries. Nanomanufacturing and Metrology, 2022, 5, 336-353.	3.0	1
9	A Nonstoichiometric Niobium Oxide/Graphite Composite for Fastâ€Charge Lithiumâ€ion Batteries. Small, 2022, 18, .	10.0	13
10	Surface Regulating of a Doubleâ€Perovskite Electrode for Protonic Ceramic Fuel Cells to Enhance Oxygen Reduction Activity and Contaminants Poisoning Tolerance. Advanced Energy Materials, 2022, 12, .	19.5	24
11	A Singleâ€Atom Feâ€N Catalyst with Ultrahigh Utilization of Active Sites for Efficient Oxygen Reduction. Small, 2022, 18, .	10.0	38
12	A hierarchical Ti2Nb10O29 composite electrode for high-power lithium-ion batteries and capacitors. Materials Today, 2021, 45, 8-19.	14.2	61
13	Enhanced Electrochemical Performance of a Ba _{0.5} Sr _{0.5} Ocsub>0.7Fe _{0.2} Ni _{0.1} Ocsub>3â^Î <td>>–BaZr∢ 5.1</td> <td>_{0.1}</td>	>–BaZr∢ 5.1	_{0.1}
14	An oxygen reduction reaction active and durable SOFC cathode/electrolyte interface achieved via a cost-effective spray-coating. International Journal of Hydrogen Energy, 2021, 46, 32242-32249.	7.1	19
15	Engineering the architecture and oxygen deficiency of T-Nb2O5-carbon-graphene composite for high-rate lithium-ion batteries. Nano Energy, 2021, 89, 106398.	16.0	45
16	A highly efficient and durable air electrode for intermediate-temperature reversible solid oxide cells. Applied Catalysis B: Environmental, 2021, 299, 120631.	20.2	37
17	Promotion of oxygen reduction reaction on a double perovskite electrode by a water-induced surface modification. Energy and Environmental Science, 2021, 14, 1506-1516.	30.8	62
18	Densely Populated Single Atom Catalysts. Small Methods, 2020, 4, 1900540.	8.6	185

#	Article	IF	CITATIONS
19	Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction. Energy and Environmental Science, 2020, 13, 3032-3040.	30.8	185
20	Recent Advances in Titanium Niobium Oxide Anodes for High-Power Lithium-Ion Batteries. Energy & Energy & Fuels, 2020, 34, 13321-13334.	5.1	43
21	Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides. Nature Communications, 2020, 11, 4299.	12.8	93
22	Facile Room-Temperature Synthesis of a Highly Active and Robust Single-Crystal Pt Multipod Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49510-49518.	8.0	17
23	Evaluation of the Volumetric Activity of the Air Electrode in a Zinc–Air Battery Using a Nitrogen and Sulfur Co-doped Metal-free Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57064-57070.	8.0	6
24	Enhanced Cr-tolerance of an SOFC cathode by an efficient electro-catalyst coating. Nano Energy, 2020, 72, 104704.	16.0	58
25	Recent Progress in Electrocatalysts for Acidic Water Oxidation. Advanced Energy Materials, 2020, 10, 2000478.	19.5	162
26	Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Materials, 2019, 16, 632-645.	18.0	225
27	Oxygen Defect Engineering: Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides (Adv. Funct. Mater. 34/2019). Advanced Functional Materials, 2019, 29, 1970236.	14.9	7
28	In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano Energy, 2019, 64, 103919.	16.0	112
29	An amorphous Zn–P/graphite composite with chemical bonding for ultra-reversible lithium storage. Journal of Materials Chemistry A, 2019, 7, 16785-16792.	10.3	30
30	Zn(Cu)Si ₂₊ <i>_x</i> P ₃ Solid Solution Anodes for Highâ€Performance Liâ€Ion Batteries with Tunable Working Potentials. Advanced Functional Materials, 2019, 29, 1903638.	14.9	14
31	Effective Promotion of Oxygen Reduction Reaction by in Situ Formation of Nanostructured Catalyst. ACS Catalysis, 2019, 9, 7137-7142.	11.2	42
32	Improving the Activity for Oxygen Evolution Reaction by Tailoring Oxygen Defects in Double Perovskite Oxides. Advanced Functional Materials, 2019, 29, 1901783.	14.9	152
33	A new family of cation-disordered Zn(Cu)–Si–P compounds as high-performance anodes for next-generation Li-ion batteries. Energy and Environmental Science, 2019, 12, 2286-2297.	30.8	53
34	High-Performance Electrodes for a Hybrid Supercapacitor Derived from a Metal–Organic Framework/Graphene Composite. ACS Applied Energy Materials, 2019, 2, 5029-5038.	5.1	48
35	Woodâ€Derived Materials for Advanced Electrochemical Energy Storage Devices. Advanced Functional Materials, 2019, 29, 1902255.	14.9	157
36	A self-healing layered GeP anode for high-performance Li-ion batteries enabled by low formation energy. Nano Energy, 2019, 61, 594-603.	16.0	76

#	Article	lF	CITATIONS
37	Structural design of Ge-based anodes with chemical bonding for high-performance Na-ion batteries. Energy Storage Materials, 2019, 20, 380-387.	18.0	33
38	Operando Investigation into Dynamic Evolution of Cathode–Electrolyte Interfaces in a Li-Ion Battery. Nano Letters, 2019, 19, 2037-2043.	9.1	85
39	A robust 2D organic polysulfane nanosheet with grafted polycyclic sulfur for highly reversible and durable lithium-organosulfur batteries. Nano Energy, 2019, 57, 635-643.	16.0	69
40	Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy, 2019, 57, 22-33.	16.0	279
41	Three-dimensional porous composite framework assembled with CuO microspheres as anode current collector for lithium-ion batteries. Science China Technological Sciences, 2019, 62, 70-79.	4.0	9
42	From Checkerboardâ€Like Sand Barriers to 3D Cu@CNF Composite Current Collectors for Highâ€Performance Batteries. Advanced Science, 2018, 5, 1800031.	11.2	18
43	A high-performance supercapacitor electrode based on N-doped porous graphene. Journal of Power Sources, 2018, 387, 43-48.	7.8	231
44	A binder-free composite anode composed of CuO nanosheets and multi-wall carbon nanotubes for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 267, 150-160.	5.2	62
45	Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy and Environmental Science, 2018, 11, 669-681.	30.8	329
46	MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. Journal of Materials Chemistry A, 2018, 6, 4003-4012.	10.3	231
47	Rational Design of Nickel Hydroxideâ€Based Nanocrystals on Graphene for Ultrafast Energy Storage. Advanced Energy Materials, 2018, 8, 1702247.	19.5	211
48	"Oneâ€forâ€All―Strategy in Fast Energy Storage: Production of Pillared MOF Nanorodâ€Templated Positive/Negative Electrodes for the Application of Highâ€Performance Hybrid Supercapacitor. Small, 2018, 14, e1800285.	10.0	75
49	A Highly Efficient Multi-phase Catalyst Dramatically Enhances the Rate of Oxygen Reduction. Joule, 2018, 2, 938-949.	24.0	221
50	An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes. Nano Energy, 2018, 47, 474-480.	16.0	76
51	An In Situ Formed, Dualâ€Phase Cathode with a Highly Active Catalyst Coating for Protonic Ceramic Fuel Cells. Advanced Functional Materials, 2018, 28, 1704907.	14.9	82
52	A bi-functional WO3-based anode enables both energy storage and conversion in an intermediate-temperature fuel cell. Energy Storage Materials, 2018, 12, 79-84.	18.0	18
53	Batteries: From Checkerboard-Like Sand Barriers to 3D Cu@CNF Composite Current Collectors for High-Performance Batteries (Adv. Sci. 7/2018). Advanced Science, 2018, 5, 1870040.	11.2	0
54	A robust fuel cell operated on nearly dry methane at 500 \hat{A}° C enabled by synergistic thermal catalysis and electrocatalysis. Nature Energy, 2018, 3, 1042-1050.	39.5	230

#	Article	IF	CITATIONS
55	A highly active, CO ₂ -tolerant electrode for the oxygen reduction reaction. Energy and Environmental Science, 2018, 11, 2458-2466.	30.8	202
56	Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery. Electrochimica Acta, 2017, 228, 241-250.	5.2	82
57	A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nature Communications, 2017, 8, 14586.	12.8	327
58	Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with highÂenergy and power density. Nano Energy, 2017, 33, 522-531.	16.0	211
59	High-Performance Energy Storage and Conversion Materials Derived from a Single Metal–Organic Framework/Graphene Aerogel Composite. Nano Letters, 2017, 17, 2788-2795.	9.1	348
60	Electrospun Porous Perovskite La _{0.6} Sr _{0.4} Co ₁ _– <i>_x</i> Fe <i>_x< Nanofibers for Efficient Oxygen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700146.</i>	%∂ <sub< td=""><td>>> 374/sub> < sı</td></sub<>	>> 374/sub> < sı
61	Functionalized Bimetallic Hydroxides Derived from Metal–Organic Frameworks for High-Performance Hybrid Supercapacitor with Exceptional Cycling Stability. ACS Energy Letters, 2017, 2, 1263-1269.	17.4	167
62	Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb ₂ O ₅ . Journal of the American Chemical Society, 2017, 139, 7071-7081.	13.7	171
63	A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Materials, 2017, 7, 32-39.	18.0	157
64	A durable polyvinyl butyral-CsH2PO4 composite electrolyte for solid acid fuel cells. Journal of Power Sources, 2017, 359, 1-6.	7.8	9
65	A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells. Energy and Environmental Science, 2017, 10, 964-971.	30.8	204
66	SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1757-1763.	30.8	431
67	A Highly Efficient and Robust Nanofiber Cathode for Solid Oxide Fuel Cells. Advanced Energy Materials, 2017, 7, 1601890.	19.5	109
68	Nickel-based pillared MOFs for high-performance supercapacitors: Design, synthesis and stability study. Nano Energy, 2016, 26, 66-73.	16.0	330
69	Probing Structural Evolution and Charge Storage Mechanism of NiO ₂ H <i>_x</i> Electrode Materials using In Operando Resonance Raman Spectroscopy. Advanced Science, 2016, 3, 1500433.	11.2	90
70	One-step synthesis of architectural Ni3S2 nanosheet-on-nanorods array for use as high-performance electrodes for supercapacitors. NPG Asia Materials, 2016, 8, e300-e300.	7.9	80
71	High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn-Ni-Al-Co oxide nanosheets. Nano Energy, 2016, 28, 475-485.	16.0	173
72	Rationally Designed 3D Fe and N Codoped Graphene with Superior Electrocatalytic Activity toward Oxygen Reduction. Small, 2016, 12, 2549-2553.	10.0	33

#	Article	IF	CITATIONS
73	Facile Synthesis of a 3D Nanoarchitectured Li ₄ Ti ₅ O ₁₂ Electrode for Ultrafast Energy Storage. Advanced Energy Materials, 2016, 6, 1500924.	19.5	88
74	Rational confinement of molybdenum based nanodots in porous carbon for highly reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 10403-10408.	10.3	16
75	A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy, 2016, 26, 90-99.	16.0	93
76	Three Strongly Coupled Allotropes in a Functionalized Porous All arbon Nanocomposite as a Superior Anode for Lithiumâ€lon Batteries. ChemElectroChem, 2016, 3, 698-703.	3.4	23
77	Dramatically enhanced reversibility of Li ₂ O in SnO ₂ -based electrodes: the effect of nanostructure on high initial reversible capacity. Energy and Environmental Science, 2016, 9, 595-603.	30.8	300
78	A polyaniline-coated mechanochemically synthesized tin oxide/graphene nanocomposite for high-power and high-energy lithium-ion batteries. Journal of Power Sources, 2015, 290, 61-70.	7.8	46
79	Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon, 2015, 93, 48-58.	10.3	293
80	A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Materials Science and Engineering Reports, 2015, 98, 1-71.	31.8	501
81	Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14446-14455.	8.0	75
82	Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy, 2015, 16, 71-80.	16.0	354
83	Core–shell structured Li _{0.33} La _{0.56} TiO ₃ perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 8545-8551.	10.3	31
84	In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries. Electrochimica Acta, 2015, 180, 914-921.	5.2	18
85	Nickelâ€Based Anode with Water Storage Capability to Mitigate Carbon Deposition for Direct Ethanol Solid Oxide Fuel Cells. ChemSusChem, 2014, 7, 1719-1728.	6.8	59
86	Design and investigation of dual-layer electrodes for proton exchange membrane fuel cells. Solid State Ionics, 2014, 262, 313-318.	2.7	12
87	Cobalt-free niobium-doped barium ferrite as potential materials of dense ceramic membranes for oxygen separation. Journal of Membrane Science, 2014, 455, 75-82.	8.2	42
88	Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance. Journal of Power Sources, 2014, 253, 80-89.	7.8	73
89	A freestanding composite film electrode stacked from hierarchical electrospun SnO2 nanorods and graphene sheets for reversible lithium storage. RSC Advances, 2014, 4, 9367-9371.	3.6	26
90	Facile Mechanochemical Synthesis of Nano SnO ₂ /Graphene Composite from Coarse Metallic Sn and Graphite Oxide: An Outstanding Anode Material for Lithiumâ€ion Batteries. Chemistry - A European Journal, 2014, 20, 4055-4063.	3.3	98

#	Article	IF	CITATIONS
91	Facile synthesis of porous MgO–CaO–SnOx nanocubes implanted firmly on in situ formed carbon paper and their lithium storage properties. Journal of Materials Chemistry A, 2014, 2, 9126.	10.3	25
92	3D amorphous carbon and graphene co-modified LiFePO4 composite derived from polyol process as electrode for high power lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 363-375.	12.9	32
93	Solid lithium electrolyte-Li4Ti5O12 composites as anodes of lithium-ion batteries showing high-rate performance. Journal of Power Sources, 2013, 231, 177-185.	7.8	29
94	A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage. Journal of Materials Chemistry A, 2013, 1, 12310.	10.3	75
95	Amorphous V–O–C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. Nanoscale, 2013, 5, 12589.	5.6	55
96	Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect. Journal of Power Sources, 2013, 238, 356-365.	7.8	36
97	Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for film formation and connection with current collector. Journal of Materials Chemistry A, 2013, 1, 4736.	10.3	142
98	Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. Journal of Materials Chemistry A, 2013, 1, 13233.	10.3	67
99	Solution combustion synthesis of high-rate performance carbon-coated lithium iron phosphate from inexpensive iron (<scp>iii</scp>) raw material. Journal of Materials Chemistry, 2012, 22, 2900-2907.	6.7	54
100	From Paper to Paper-like Hierarchical Anatase TiO ₂ Film Electrode for High-Performance Lithium-lon Batteries. Journal of Physical Chemistry C, 2012, 116, 17440-17447.	3.1	70
101	Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. Electrochimica Acta, 2012, 85, 636-643.	5.2	81
102	A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature. Journal of Materials Chemistry, 2012, 22, 8013.	6.7	67
103	Catalytic decomposition of hydrous hydrazine to hydrogen over oxide catalysts at ambient conditions for PEMFCs. International Journal of Hydrogen Energy, 2012, 37, 1133-1139.	7.1	35
104	Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibersâ€. Journal of Materials Chemistry, 2011, 21, 15041.	6.7	68
105	An Active and Robust Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. ACS Energy Letters, 0, , 1511-1520.	17.4	109