Yijie Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7771299/publications.pdf Version: 2024-02-01

VILLE VIA

#	Article	IF	CITATIONS
1	Solutionâ€Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices. Advanced Materials, 2012, 24, 2436-2440.	21.0	969
2	Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics, 2015, 26, 4438-4462.	2.2	464
3	PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells. Journal of Materials Chemistry, 2011, 21, 4927.	6.7	428
4	Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells. Energy and Environmental Science, 2012, 5, 5325-5332.	30.8	242
5	Significant Conductivity Enhancement of Conductive Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) Films through a Treatment with Organic Carboxylic Acids and Inorganic Acids. ACS Applied Materials & Interfaces, 2010, 2, 474-483.	8.0	224
6	Salt-Induced Charge Screening and Significant Conductivity Enhancement of Conducting Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate). Macromolecules, 2009, 42, 4141-4147.	4.8	210
7	Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode. ACS Applied Materials & Interfaces, 2015, 7, 15314-15320.	8.0	201
8	Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells. Journal of Materials Chemistry, 2010, 20, 9740.	6.7	191
9	PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 11629-11638.	8.0	187
10	Significant Different Conductivities of the Two Grades of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate), Clevios P and Clevios PH1000, Arising from Different Molecular Weights. ACS Applied Materials & Interfaces, 2012, 4, 4131-4140.	8.0	146
11	Anion effect on salt-induced conductivity enhancement of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films. Organic Electronics, 2010, 11, 1129-1135.	2.6	125
12	Significant Enhancement in the Thermoelectric Properties of PEDOT:PSS Films through a Treatment with Organic Solutions of Inorganic Salts. ACS Applied Materials & Interfaces, 2016, 8, 23204-23211.	8.0	117
13	Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15897-15904.	10.3	85
14	Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 12746-12757.	2.2	59
15	Solution-Processed Highly Superparamagnetic and Conductive PEDOT:PSS/Fe ₃ O ₄ Nanocomposite Films with High Transparency and High Mechanical Flexibility. ACS Applied Materials & Interfaces, 2017, 9, 19001-19010.	8.0	55
16	Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate films with low conductivity and low acidity through a treatment of their solutions with probe ultrasonication and their application as hole transport layer in polymer solar cells and perovskite solar cells. Organic Electronics, 2016, 32, 149-156.	2.6	54
17	Review on Tailoring PEDOT:PSS Layer for Improved Device Stability of Perovskite Solar Cells. Nanomaterials, 2021, 11, 3119.	4.1	35
18	Fabrication of polypyrrole (PPy) nanotube electrode for supercapacitors with enhanced electrochemical performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 581-586.	2.2	16

ΥΙJΙΕ ΧΙΑ

#	Article	IF	CITATIONS
19	Highly conductive film of PEDOT:PSS treated with cosolvent of formamide and methanol for flexible piezoresistive sensor applications. Applied Physics Letters, 2022, 120, .	3.3	8
20	Triptycene-based microporous polymer incorporating thioamide functionality: Preparation and gas storage properties. Journal of Polymer Science Part A, 2015, 53, 2193-2197.	2.3	2
21	The piezoresistive performances of the devices with fullerene-doped MEH-PPV films. Microsystem Technologies, 2021, 27, 2661-2670.	2.0	2
22	Impact of gelation in nickel-rich ternary lithium-ion batteries. Ionics, 2021, 27, 5159-5166.	2.4	2
23	Polypyrrole/SnO2@SiO2 as anode materials with improved lithium storage performance. Ionics, 2022, 28, 1109-1117.	2.4	2
24	Temperature-Dependent Photoluminescence of Manganese Halide with Tetrahedron Structure in Anti-Perovskites. Nanomaterials, 2021, 11, 3310.	4.1	0