Christopher R Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7771253/publications.pdf

Version: 2024-02-01

159585 182427 2,637 53 30 51 citations h-index g-index papers 53 53 53 923 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design of inertial fusion implosions reaching the burning plasma regime. Nature Physics, 2022, 18, 251-258.	16.7	87
2	Burning plasma achieved in inertial fusion. Nature, 2022, 601, 542-548.	27.8	233
3	Exploring implosion designs for increased compression on the National Ignition Facility using high density carbon ablators. Physics of Plasmas, 2022, 29, .	1.9	15
4	Hydroscaling indirect-drive implosions on the National Ignition Facility. Physics of Plasmas, 2022, 29, .	1.9	4
5	Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E. Physics of Plasmas, 2021, 28, .	1.9	55
6	Evidence of Three-Dimensional Asymmetries Seeded by High-Density Carbon-Ablator Nonuniformity in Experiments at the National Ignition Facility. Physical Review Letters, 2021, 126, 025002.	7.8	40
7	Record Energetics for an Inertial Fusion Implosion at NIF. Physical Review Letters, 2021, 126, 025001.	7.8	76
8	Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility. Plasma Physics and Controlled Fusion, 2020, 62, 014007.	2.1	31
9	Integrated performance of large HDC-capsule implosions on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	22
10	Hot-spot mix in large-scale HDC implosions at NIF. Physics of Plasmas, 2020, 27, .	1.9	46
11	Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators. Physics of Plasmas, 2020, 27, .	1.9	11
12	Measurements of enhanced performance in an indirect drive inertial confinement fusion experiment when reducing the contact area of the capsule support. Physics of Plasmas, 2020, 27, .	1.9	7
13	Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National Ignition Facility. Physical Review E, 2020, 102, 023210.	2.1	25
14	Cross-code comparison of the impact of the fill tube on high yield implosions on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	16
15	Measurement of hydrodynamic instability growth during the deceleration of an inertial confinement fusion implosion. High Energy Density Physics, 2020, 37, 100817.	1.5	1
16	Symmetric fielding of the largest diamond capsule implosions on the NIF. Physics of Plasmas, 2020, 27, .	1.9	28
17	Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	50
18	Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube. Physics of Plasmas, 2020, 27, .	1.9	41

#	Article	IF	CITATIONS
19	Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	20
20	Impact of Localized Radiative Loss on Inertial Confinement Fusion Implosions. Physical Review Letters, 2020, 124, 145001.	7.8	58
21	Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF). Plasma Physics and Controlled Fusion, 2019, 61, 014023.	2.1	53
22	Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Physics of Plasmas, 2019, 26, .	1.9	70
23	The high velocity, high adiabat, "Bigfoot―campaign and tests of indirect-drive implosion scaling. Physics of Plasmas, 2018, 25, .	1.9	90
24	Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators. Physics of Plasmas, 2018, 25, .	1.9	62
25	A "polar contact―tent for reduced perturbation and improved performance of NIF ignition capsules. Physics of Plasmas, 2018, 25, 082714.	1.9	17
26	Single-mode perturbation growth in an idealized spherical implosion. Journal of Computational Physics, 2018, 371, 801-819.	3.8	14
27	Mitigation of X-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube. Physics of Plasmas, 2018, 25, .	1.9	30
28	Hydrodynamic instabilities seeded by the X-ray shadow of ICF capsule fill-tubes. Physics of Plasmas, 2018, 25, .	1.9	25
29	Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant. Physics of Plasmas, 2018, 25, .	1.9	42
30	Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility. Physical Review Letters, 2018, 120, 245003.	7.8	205
31	Improving ICF implosion performance with alternative capsule supports. Physics of Plasmas, 2017, 24, .	1.9	54
32	Hydrodynamic instability growth of three-dimensional modulations in radiation-driven implosions with "low-foot―and "high-foot―drives at the National Ignition Facility. Physics of Plasmas, 2017, 24, .	1.9	30
33	Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity. Physics of Plasmas, 2017, 24, .	1.9	106
34	Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility. Physics of Plasmas, 2017, 24, 102707.	1.9	27
35	X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube. Physical Review E, 2017, 95, 031204.	2.1	46
36	Indirect drive ignition at the National Ignition Facility. Plasma Physics and Controlled Fusion, 2017, 59, 014021.	2.1	64

#	Article	IF	Citations
37	Capsule modeling of high foot implosion experiments on the National Ignition Facility. Plasma Physics and Controlled Fusion, 2017, 59, 055006.	2.1	40
38	Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules. Journal of Physics: Conference Series, 2016, 717, 012013.	0.4	17
39	Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility. Journal of Physics: Conference Series, 2016, 717, 012011.	0.4	2
40	Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims. Physics of Plasmas, 2016, 23, 072707.	1.9	20
41	Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	162
42	Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping. Physics of Plasmas, 2016, 23, 056303.	1.9	38
43	Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	27
44	First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility. Physical Review Letters, 2016, 117, 075002.	7.8	33
45	Simulations and experiments of the growth of the "tent―perturbation in NIF ignition implosions. Journal of Physics: Conference Series, 2016, 717, 012021.	0.4	28
46	Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive. Physical Review Letters, 2015, 115, 105001.	7.8	58
47	Design of indirectly driven, high-compression Inertial Confinement Fusion implosions with improved hydrodynamic stability using a 4-shock adiabat-shaped drive. Physics of Plasmas, 2015, 22, .	1.9	22
48	Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign. Physics of Plasmas, 2015, 22, .	1.9	120
49	Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion. Physics of Plasmas, 2015, 22, 032702.	1.9	45
50	Adiabat-shaping in indirect drive inertial confinement fusion. Physics of Plasmas, 2015, 22, 052702.	1.9	31
51	Hydrodynamic instability growth of three-dimensional, "native-roughness―modulations in x-ray driven, spherical implosions at the National Ignition Facility. Physics of Plasmas, 2015, 22, .	1.9	46
52	A survey of pulse shape options for a revised plastic ablator ignition design. Physics of Plasmas, 2014, 21, .	1.9	50
53	Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation. Physical Review E, 2014, 89, 053106.	2.1	97