Rajeev Ahuja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7770682/publications.pdf

Version: 2024-02-01

976 papers 37,827 citations

87 h-index 9103 144 g-index

987 all docs

987
docs citations

times ranked

987

30322 citing authors

#	Article	IF	CITATIONS
1	Dimensionality effects in highâ€performance thermoelectric materials: Computational and experimental progress in energy harvesting applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1547.	14.6	20
2	Exploring the relationship between Ln leaching and Ln–O binding energy in monazite (Nd, Sm, Eu). Journal of the American Ceramic Society, 2022, 105, 553-563.	3.8	5
3	Two-dimensional Nitrogenated Holey Graphene (C2N) monolayer based glucose sensor for diabetes mellitus. Applied Surface Science, 2022, 573, 151579.	6.1	20
4	Asymmetry-Induced Redistribution in Sn(IV)–Ti(IV) Hetero-Bimetallic Alkoxide Precursors and Its Impact on Thin-Film Deposition by Metal–Organic Chemical Vapor Deposition. Crystal Growth and Design, 2022, 22, 54-59.	3.0	1
5	Molecular nanoinformatics approach assessing the biocompatibility of biogenic silver nanoparticles with channelized intrinsic steatosis and apoptosis. Green Chemistry, 2022, 24, 1190-1210.	9.0	23
6	First-principles calculations to investigate electronic structure and optical properties of 2D MgCl2 monolayer. Superlattices and Microstructures, 2022, 162, 107132.	3.1	15
7	Thermophysical properties of helium and hydrogen mixtures under high pressure predicted by ab-initio calculations: Implications for Saturn and Jupiter planets. Chemical Physics, 2022, 555, 111430.	1.9	O
8	Roles of optical phonons and logarithmic profile of electron-phonon coupling integration in superconducting Sc0.5Y0.5H6 superhydride under pressures. Journal of Alloys and Compounds, 2022, 901, 163524.	5.5	11
9	Binding and optical characteristics of polycyclic aromatic hydrocarbons and their nitroderivatives adsorbed on the C ₃ N monolayer. New Journal of Chemistry, 2022, 46, 2245-2258.	2.8	7
10	Elucidating the reaction pathway of crystalline multi-metal borides for highly efficient oxygen-evolving electrocatalysts. Journal of Materials Chemistry A, 2022, 10, 1569-1578.	10.3	13
11	Contact electrification through interfacial charge transfer: a mechanistic viewpoint on solid–liquid interfaces. Nanoscale Advances, 2022, 4, 884-893.	4.6	4
12	Two-Dimensional Perovskite/HfS ₂ van der Waals Heterostructure as an Absorber Material for Photovoltaic Applications. ACS Applied Energy Materials, 2022, 5, 2300-2307.	5.1	9
13	Modified KBBF-like Material for Energy Storage Applications: ZnNiBO ₃ (OH) with Enhanced Cycle Life. ACS Applied Materials & Samp; Interfaces, 2022, 14, 8025-8035.	8.0	20
14	Pressure induced structural phase transition and piezochromism in photovoltaic sillen compounds PbBiO2X (XÂ=ÂCl, Br & I). Applied Materials Today, 2022, 26, 101372.	4.3	0
15	Exotic magnetic and electronic properties of layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CrI</mml:mi><mml:mn>3<td>ın 8∢‡mml:</td><td>:msub></td></mml:mn></mml:msub></mml:math>	ın 8∢‡mml:	:m su b>
16	Strain-mediated ferromagnetism and low-field magnetic reversal in Co doped monolayer \$\$WS_2\$\$. Scientific Reports, 2022, 12, 2593.	3.3	10
17	Relativistic Effects in Platinum Nanocluster Catalysis: A Statistical Ensemble-Based Analysis. Journal of Physical Chemistry A, 2022, 126, 1345-1359.	2.5	7
18	Two-Dimensional Bismuthene Nanosheets for Selective Detection of Toxic Gases. ACS Applied Nano Materials, 2022, 5, 2984-2993.	5.0	29

#	Article	IF	CITATIONS
19	Strain modulating electronic band gaps and SQ efficiencies of semiconductor 2D PdQ2 (Q = S, Se) monolayer. Scientific Reports, 2022, 12, 2964.	3.3	19
20	Zn–Co-MOF on solution-free CuO nanowires for flexible hybrid energy storage devices. Materials Today Physics, 2022, 23, 100655.	6.0	35
21	Electronic bandstructure modulation of MoX2/ZnO(X:S,Se) heterostructure by applying external electric field. Surfaces and Interfaces, 2022, 29, 101817.	3.0	8
22	Progress and challenges in layered two-dimensional hybrid perovskites. Nanotechnology, 2022, 33, 292501.	2.6	11
23	Revealing the superlative electrochemical properties of o-B2N2 monolayer in Lithium/Sodium-ion batteries. Nano Energy, 2022, 96, 107066.	16.0	29
24	2D Janus and non-Janus diamanes with an in-plane negative Poisson's ratio for energy applications. Materials Today Advances, 2022, 14, 100225.	5.2	10
25	Janus Aluminum Oxysulfide Al2OS: A promising 2D direct semiconductor photocatalyst with strong visible light harvesting. Applied Surface Science, 2022, 589, 152997.	6.1	21
26	Structures, stabilities, optoelectronic and photocatalytic properties of Janus aluminium mono-chalcogenides Al(Ga, In)STe monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 142, 115229.	2.7	2
27	Stabilizing superconductivity of ternary metal pentahydride \$\$hbox {CaCH}_{{5}}\$\$ via electronic topological transitions under high pressure from first principles evolutionary algorithm. Scientific Reports, 2022, 12, 6700.	3.3	3
28	TM dopant-induced H-vacancy diffusion kinetics of sodium-lithium alanates: Ab initio study for hydrogen storage improvement. International Journal of Hydrogen Energy, 2022, 47, 18763-18771.	7.1	11
29	Activationâ€Induced Surface Modulation of Biowasteâ€Derived Hierarchical Porous Carbon for Supercapacitors. ChemPlusChem, 2022, 87, .	2.8	18
30	Bifunctional catalytic activity of 2D boron monochalcogenides BX (XÂ=ÂS, Se, Te). Materials Today Energy, 2022, 27, 101026.	4.7	7
31	Flexible 3D porous boron nitride interconnected network as a high-performance Li-and Na-ion battery electrodes. Electrochimica Acta, 2022, 421, 140491.	5.2	9
32	Probing the electronic, optical and transport properties of halide double perovskites Rb2InSb(Cl,Br)6 for solar cells and thermoelectric applications. Journal of Solid State Chemistry, 2022, 312, 123262.	2.9	10
33	Prominent Electrode Material for Na-, K-, and Mg-ion Batteries: 2D Î ² -Sb Monolayer. Energy & Samp; Fuels, 2022, 36, 7087-7095.	5.1	16
34	Tuning the electronic, magnetic, and sensing properties of a single atom embedded microporous $C \cdot sub \cdot 3 \cdot sub \cdot N \cdot sub \cdot 6 \cdot sub \cdot monolayer towards XO \cdot sub \cdot 2 \cdot sub \cdot (X = C, N, S) gases. New Journal of Chemistry, 2022, 46, 13752-13765.$	2.8	5
35	Optoelectronic properties of 2D van der Waals heterostructure As/PtS2 by first-principles calculations. Materials Today: Proceedings, 2022, 67, 250-253.	1.8	1
36	Transition metal substituted MoS2/WS2 van der Waals heterostructure for realization of dilute magnetic semiconductors. Journal of Magnetism and Magnetic Materials, 2022, 560, 169567.	2.3	6

#	Article	IF	CITATIONS
37	Impact of stacking on the optoelectronic properties of 2D ZrS2/GaS heterostructure. Materials Today: Proceedings, 2021, 47, 526-528.	1.8	9
38	Novel green phosphorene as a superior chemical gas sensing material. Journal of Hazardous Materials, 2021, 401, 123340.	12.4	71
39	Exploring Janus MoSSe monolayer as a workable media for SOF6 decompositions sensing based on DFT calculations. Computational Materials Science, 2021, 186, 109976.	3.0	21
40	Modulation of 2D GaS/BTe vdW heterostructure as an efficient HER catalyst under external electric field influence. Catalysis Today, 2021, 370, 14-25.	4.4	20
41	Ultrahigh carrier mobility and light-harvesting performance of 2D penta-PdX2 monolayer. Journal of Materials Science, 2021, 56, 3846-3860.	3.7	24
42	Bain Deformation Mechanism and Lifshitz Transition in Magnesium under High Pressure. Physica Status Solidi (B): Basic Research, 2021, 258, 2000279.	1.5	8
43	Mechanism of formaldehyde and formic acid formation on (101)-TiO ₂ @Cu ₄ systems through CO ₂ hydrogenation. Sustainable Energy and Fuels, 2021, 5, 564-574.	4.9	4
44	Structural, electronic and optical properties of two-dimensional Janus transition metal oxides MXO (M=Ti, Hf and Zr; X=S and Se) for photovoltaic and opto-electronic applications. Physica B: Condensed Matter, 2021, 604, 412621.	2.7	24
45	Thermodynamics and kinetics of 2D g-GeC monolayer as an anode materials for Li/Na-ion batteries. Journal of Power Sources, 2021, 485, 229318.	7.8	60
46	Selective decoration of nitrogenated holey graphene (C2N) with titanium clusters for enhanced hydrogen storage application. International Journal of Hydrogen Energy, 2021, 46, 7371-7380.	7.1	63
47	Cs2InGaX6 (X=Cl, Br, or I): Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics. Current Applied Physics, 2021, 21, 50-57.	2.4	48
48	Integration of CuO nanosheets to Zn-Ni-Co oxide nanowire arrays for energy storage applications. Chemical Engineering Journal, 2021, 413, 127570.	12.7	70
49	Scavenging properties of yttrium nitride monolayer towards toxic sulfur gases. Applied Surface Science, 2021, 537, 147711.	6.1	8
50	Van der Waals Heterostructure-Based Anode Materials. , 2021, , 1-18.		0
51	No-Carbon 2D Anode Materials for Next-Generation Batteries. , 2021, , 1-14.		0
52	Introduction: Background of Computational and Experimental Investigations for Next-Generation Efficient Battery Materials., 2021,, 1-34.		0
53	An oriented Ni–Co-MOF anchored on solution-free 1D CuO: a p–n heterojunction for supercapacitive energy storage. Journal of Materials Chemistry A, 2021, 9, 17790-17800.	10.3	86
54	Hydrogenation and oxidation enhances the thermoelectric performance of Si ₂ BN monolayer. New Journal of Chemistry, 2021, 45, 3892-3900.	2.8	8

#	Article	IF	CITATIONS
55	Pressure-promoted highly-ordered Fe-doped-Ni ₂ B for effective oxygen evolution reaction and overall water splitting. Journal of Materials Chemistry A, 2021, 9, 6469-6475.	10.3	37
56	Data-Driven Machine Learning Approaches for Advanced Battery Modeling. , 2021, , 1-18.		0
57	Determining factors for the nano-biocompatibility of cobalt oxide nanoparticles: proximal discrepancy in intrinsic atomic interactions at differential vicinage. Green Chemistry, 2021, 23, 3439-3458.	9.0	38
58	Formation of Lightweight Ternary Polyhydrides and Their Hydrogen Storage Mechanism. Journal of Physical Chemistry C, 2021, 125, 1723-1730.	3.1	19
59	Suitable Electrode Materials for Hybrid Capacitors. , 2021, , 1-30.		0
60	MXene-Based 2D Anode Materials for Next-Generation Batteries. , 2021, , 1-20.		1
61	Graphene-Based Anode Materials for Li and Na Batteries. , 2021, , 1-24.		0
62	Design of Continuous Transport of the Droplet by the Contact-Boiling Regime. Langmuir, 2021, 37, 553-560.	3.5	8
63	Effect of Charge Injection on the Conducting Filament of Valence Change Anatase TiO ₂ Resistive Random Access Memory Device. Journal of Physical Chemistry Letters, 2021, 12, 1876-1884.	4.6	20
64	8-16-4 graphyne: Square-lattice two-dimensional nodal line semimetal with a nontrivial topological Zak index. Physical Review B, 2021, 103, .	3.2	26
65	Stabilization and electronic topological transition of hydrogen-rich metal Li5MoH11 under high pressures from first-principles predictions. Scientific Reports, 2021, 11, 4079.	3.3	12
66	Large-Scale Fabrication of Wettability-Controllable Coatings for Optimizing Condensate Transfer Ability. Langmuir, 2021, 37, 2476-2484.	3.5	4
67	Intrinsic atomic interaction at molecular proximal vicinity infer cellular biocompatibility of antibacterial nanopepper. Nanomedicine, 2021, 16, 307-322.	3.3	9
68	Large-Scale Screening of Interface Parameters in the WC/W System Using Classical Force Field and First-Principles Calculations. Journal of Physical Chemistry C, 2021, 125, 3631-3639.	3.1	3
69	Electronic and Transport Properties of Bilayer Phosphorene Nanojunction: Effect of Paired Substitution Doping. ACS Applied Electronic Materials, 2021, 3, 733-742.	4.3	13
70	From Monolayers to Nanotubes: Toward Catalytic Transition-Metal Dichalcogenides for Hydrogen Evolution Reaction. Energy & Evolution Reaction. Energy & Evolution Reaction. Energy & Evolution Reaction.	5.1	10
71	Enthalpy stabilization of superconductivity in an alloying S-P-H system: First-principles cluster expansion study under high pressure. Computational Materials Science, 2021, 190, 110282.	3.0	20
72	Salt-assisted growth of monolayer MoS2 for high-performance hysteresis-free field-effect transistor. Journal of Applied Physics, 2021, 129, .	2.5	19

#	Article	IF	CITATIONS
73	Carbon Nitride Monolayers as Efficient Immobilizers toward Lithium Selenides: Potential Applications in Lithium–Selenium Batteries. ACS Applied Energy Materials, 2021, 4, 3891-3904.	5.1	10
74	Antimonene Allotropes α- and β-Phases as Promising Anchoring Materials for Lithium–Sulfur Batteries. Energy & Energ	5.1	15
75	Density Functional Theory Study on Sensing and Dielectric Properties of Arsenic Trisulfide Nanosheets for Detecting Volatile Organic Compounds. ACS Applied Nano Materials, 2021, 4, 5444-5453.	5.0	9
76	Lithium-functionalized boron phosphide nanotubes (BPNTs) as an efficient hydrogen storage carrier. International Journal of Hydrogen Energy, 2021, 46, 20586-20593.	7.1	17
77	Substituted 2D Janus WSSe monolayers as efficient nanosensor toward toxic gases. Journal of Applied Physics, 2021, 130, .	2.5	16
78	Understanding carbon dioxide capture on metal–organic frameworks from first-principles theory: The case of MIL-53(X), with X = Fe3+, Al3+, and Cu2+. Journal of Chemical Physics, 2021, 155, 024701.	3.0	6
79	Role of atomicity in the oxygen reduction reaction activity of platinum sub nanometer clusters: A global optimization study. Journal of Computational Chemistry, 2021, 42, 1944-1958.	3.3	4
80	Exploring the Full Potential of Functional Si ₂ BN Nanoribbons As Highly Reversible Anode Materials for Mg-Ion Battery. Energy &	5.1	3
81	Computational identification of efficient 2D Aluminium chalcogenides monolayers for optoelectronics and photocatalysts applications. Applied Surface Science, 2021, 556, 149561.	6.1	31
82	High-Specific-Capacity and High-Performing Post-Lithium-Ion Battery Anode over 2D Black Arsenic Phosphorus. ACS Applied Energy Materials, 2021, 4, 7900-7910.	5.1	19
83	Application of germanene monolayers as efficient anchoring material to immobilize lithium polysulfides in Li-S batteries. Applied Surface Science, 2021, 558, 149850.	6.1	8
84	High-temperature superconductor of sodalite-like clathrate hafnium hexahydride. Scientific Reports, 2021, 11, 16403.	3.3	9
85	Empowering hydrogen storage properties of haeckelite monolayers via metal atom functionalization. Applied Surface Science, 2021, 556, 149709.	6.1	20
86	Nitrogen-Containing Gas Sensing Properties of 2-D Ti2N and Its Derivative Nanosheets: Electronic Structures Insight. Nanomaterials, 2021, 11, 2459.	4.1	5
87	Altered electrochemical properties of iron oxide nanoparticles by carbon enhance molecular biocompatibility through discrepant atomic interaction. Materials Today Bio, 2021, 12, 100131.	5.5	6
88	Electric Field-Modulated Charge Transfer in Geometrically Tailored $MoX < sub > 2 < /sub > /WX < sub > 2 < /sub > (X = S, Se)$ Heterostructures. Journal of Physical Chemistry C, 2021, 125, 22360-22369.	3.1	15
89	Drastic reduction of thermal conductivity in hexagonal AX (AÂ=ÂGa, In & Tl, XÂ=ÂS, Se & Te) monolayers due to alternative atomic configuration. Nano Energy, 2021, 88, 106248.	16.0	19
90	Electronic, optical and thermoelectric properties of two-dimensional pentagonal SiGeC4 nanosheet for photovoltaic applications: First-principles calculations. Superlattices and Microstructures, 2021, 158, 107024.	3.1	9

#	Article	IF	Citations
91	Two-dimensional Janus Sn2SSe and SnGeS2 semiconductors as strong absorber candidates for photovoltaic solar cells: First principles computations. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114900.	2.7	20
92	Binder-free trimetallic phosphate nanosheets as an electrode: Theoretical and experimental investigation. Journal of Power Sources, 2021, 513, 230556.	7.8	45
93	Enhanced overall water splitting under visible light of MoSSeâ^£WSSe heterojunction by lateral interfacial engineering. Journal of Catalysis, 2021, 404, 18-31.	6.2	13
94	Dissociation of air pollutants on the uniform surface of pentagonal BeP2. Applied Surface Science, 2021, 570, 151061.	6.1	3
95	Organic Batteries: the Route Toward Sustainable Electrical Energy Storage Technologies., 2021,, 1-22.		2
96	Influence of vacancy and adatom defects on the optoelectronic properties of monolayer GeS. AIP Conference Proceedings, 2021, , .	0.4	0
97	Potential SiX (X = N, P, As, Sb, Bi) homo-bilayers for visible-light photocatalyst applications. Catalysis Science and Technology, 2021, 11, 4996-5013.	4.1	18
98	Future Outlook and Direction of Next-Generation Battery Materials. , 2021, , 1-22.		0
99	Computational and Experimental Techniques to Envisage Battery Materials. , 2021, , 1-22.		0
100	MXene binder stabilizes pseudocapacitance of conducting polymers. Journal of Materials Chemistry A, 2021, 9, 20356-20361.	10.3	15
101	Local electrocatalytic activity of PtRu supported on nitrogen-doped carbon nanotubes towards methanol oxidation by scanning electrochemical microscopy. Journal of Materials Chemistry A, 2021, 9, 21291-21301.	10.3	18
102	Harnessing the unique properties of MXenes for advanced rechargeable batteries. JPhys Energy, 2021, 3, 012005.	5.3	14
103	Pressure-induced order–disorder transitions in β-In ₂ S ₃ : an experimental and theoretical study of structural and vibrational properties. Physical Chemistry Chemical Physics, 2021, 23, 23625-23642.	2.8	3
104	Polypeptoid Material as an Anchoring Material for Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 13070-13076.	5.1	8
105	Recent Advancements in Nontoxic Halide Perovskites: Beyond Divalent Composition Space. ACS Omega, 2021, 6, 33240-33252.	3.5	9
106	Tuning the Nanoparticle Interfacial Properties and Stability of the Core–Shell Structure in Zn-Doped NiMoO ₄ @AWO ₄ . ACS Applied Materials & Diterfaces, 2021, 13, 56116-56130.	8.0	30
107	Theoretical Prediction of a Bi-Doped \hat{l}^2 -Antimonene Monolayer as a Highly Efficient Photocatalyst for Oxygen Reduction and Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 56254-56264.	8.0	10
108	Fabrication of BP2T functionalized graphene via non-covalent π–π stacking interactions for enhanced ammonia detection. RSC Advances, 2021, 11, 35982-35987.	3.6	2

#	Article	IF	Citations
109	Electronic and optical properties of ZnO nanosheet doped and codoped with Be and/or Mg for ultraviolet optoelectronic technologies: density functional calculations. Physica Scripta, 2020, 95, 015804.	2.5	17
110	Investigating CO2 storage properties of C2N monolayer functionalized with small metal clusters. Journal of CO2 Utilization, 2020, 35, $1-13$.	6.8	20
111	Examination of the Magnetic Properties of the Triangular Type Mixed spin- $(1/2, 1)$ Nanowire. Journal of Superconductivity and Novel Magnetism, 2020, 33, 817-824.	1.8	8
112	Progress in supercapacitors: roles of two dimensional nanotubular materials. Nanoscale Advances, 2020, 2, 70-108.	4.6	164
113	Orbital hybridization-induced band offset phenomena in Ni _x Cd _{1â^'x} O thin films. Nanoscale, 2020, 12, 669-686.	5.6	11
114	Li-decorated carbyne for hydrogen storage: charge induced polarization and van't Hoff hydrogen desorption temperature. Sustainable Energy and Fuels, 2020, 4, 691-699.	4.9	24
115	Remarkable improvement in hydrogen storage capacities of two-dimensional carbon nitride (g-C3N4) nanosheets under selected transition metal doping. International Journal of Hydrogen Energy, 2020, 45, 3035-3045.	7.1	110
116	Boron-Rich Molybdenum Boride with Unusual Short-Range Vacancy Ordering, Anisotropic Hardness, and Superconductivity. Chemistry of Materials, 2020, 32, 459-467.	6.7	35
117	Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Materials Today, 2020, 32, 108-130.	14.2	271
118	Insights into the trapping mechanism of light metals on C2N-h2D: Utilisation as an anode material for metal ion batteries. Carbon, 2020, 160, 125-132.	10.3	29
119	Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for Water Splitting. Catalysts, 2020, 10, 1111.	3.5	35
120	Improved Adsorption and Migration of Divalent Ions Over C4N Nanosheets: Potential Anode for Divalent Batteries. Surfaces and Interfaces, 2020, 21, 100758.	3.0	5
121	Superior Anchoring of Sodium Polysulfides to the Polar C ₂ N 2D Material: A Potential Electrode Enhancer in Sodium–Sulfur Batteries. Langmuir, 2020, 36, 13104-13111.	3.5	27
122	Excitonic effects in the optoelectronic properties of graphene-like BC monolayer. Optical Materials, 2020, 110, 110476.	3.6	19
123	Exploring the Degradation Behavior of Ce-Monazite in Water Solution through Adsorption and Penetration Kinetics. Journal of Physical Chemistry C, 2020, 124, 22173-22184.	3.1	10
124	Tunning Hydrogen Storage Properties of Carbon Ene–Yne Nanosheets through Selected Foreign Metal Functionalization. Journal of Physical Chemistry C, 2020, 124, 16827-16837.	3.1	15
125	Bulk and monolayer As2S3 as promising thermoelectric material with high conversion performance. Computational Materials Science, 2020, 183, 109913.	3.0	24
126	Rational Design of 2D h-BAs Monolayer as Advanced Sulfur Host for High Energy Density Li–S Batteries. ACS Applied Energy Materials, 2020, 3, 7306-7317.	5.1	23

#	Article	IF	CITATIONS
127	Core–shell nanostructures: perspectives towards drug delivery applications. Journal of Materials Chemistry B, 2020, 8, 8992-9027.	5.8	127
128	Emerging piezochromism in transparent lead free perovskite Rb3X2I9 (X = Sb, Bi) under compression: A comparative theoretical insight. Journal of Applied Physics, 2020, 128, 045102.	2.5	5
129	Reaction coordinate mapping of hydrogen evolution mechanism on Mg3N2 monolayer. International Journal of Hydrogen Energy, 2020, 45, 22848-22854.	7.1	7
130	Ultrathin nanowire PdX $<$ sub $>$ 2 $<$ /sub $>$ (X = P, As): stability, electronic transport and thermoelectric properties. New Journal of Chemistry, 2020, 44, 15617-15624.	2.8	3
131	Turning indium oxide into high-performing electrode materials via cation substitution strategy: Preserving single crystalline cubic structure of 2D nanoflakes towards energy storage devices. Journal of Power Sources, 2020, 480, 228873.	7.8	53
132	Emerging piezochromism in lead free alkaline earth chalcogenide perovskite AZrS ₃ (A =) Tj ETQq0 0 (OrgBT /Ov	erlock 10 Tf 24
133	Route to high-\$\$T_{c}\$\$ superconductivity of \$\$hbox {BC}_{{7}}\$\$ via strong bonding of boron–carbon compound at high pressure. Scientific Reports, 2020, 10, 18090.	3.3	11
134	Structural Insight of the Frailty of 2D Janus NbSeTe as an Active Photocatalyst. ChemCatChem, 2020, 12, 6013-6023.	3.7	20
135	Temperature-Dependent Cationic Doping-Driven Phonon Dynamics Investigation in CdO Thin Films Using Raman Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 21818-21828.	3.1	4
136	Toroidal Metaphotonics and Metadevices. Laser and Photonics Reviews, 2020, 14, 1900326.	8.7	95
137	Zn Metal Atom Doping on the Surface Plane of One-Dimesional NiMoO ₄ Nanorods with Improved Redox Chemistry. ACS Applied Materials & Interfaces, 2020, 12, 44815-44829.	8.0	67
138	Optical excitations and thermoelectric properties of two-dimensional holey graphene. Physical Review B, 2020, 102, .	3.2	28
139	Recent progress of defect chemistry on 2D materials for advanced battery anodes. Chemistry - an Asian Journal, 2020, 15, 3390-3404.	3.3	35
140	Density Functional Theory Studies of Si ₂ BN Nanosheets as Anode Materials for Magnesium-Ion Batteries. ACS Applied Nano Materials, 2020, 3, 9055-9063.	5.0	40
141	Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in Two-Dimensional Thallium Selenide. ACS Applied Energy Materials, 2020, 3, 9315-9325.	5.1	24
142	Elucidating hydrogen storage properties of two-dimensional siligraphene (SiC ₈) monolayers upon selected metal decoration. Sustainable Energy and Fuels, 2020, 4, 5578-5587.	4.9	22
143	High Thermoelectric Performance in Two-Dimensional Janus Monolayer Material WS-X (<i>X</i> = Se) Tj ETQq1 1 (0.784314 8.0	rgBT /Overlo
144	Highly Sensitive Gas Sensing Material for Environmentally Toxic Gases Based on Janus NbSeTe Monolayer. Nanomaterials, 2020, 10, 2554.	4.1	17

#	Article	IF	CITATIONS
145	Poisonous Vapor Adsorption on Pure and Modified Aluminum Nitride Nanosheet for Environmental Safety: A DFT Exploration. Sustainability, 2020, 12, 10097.	3.2	3
146	Promising high-temperature thermoelectric response of bismuth oxybromide. Results in Physics, 2020, 19, 103584.	4.1	27
147	Highly Energetic and Stable Gadolinium/Bismuth Molybdate with a Fast Reactive Species, Redox Mechanism of Aqueous Electrolyte. ACS Applied Energy Materials, 2020, 3, 12385-12399.	5.1	21
148	First-Principles Exploration of Hazardous Gas Molecule Adsorption on Pure and Modified Al60N60 Nanoclusters. Nanomaterials, 2020, 10, 2156.	4.1	2
149	Defective and doped aluminum nitride monolayers for NO adsorption: Physical insight. Chemical Physics Letters, 2020, 753, 137592.	2.6	11
150	Influence of Kubas-type interaction of B–Ni codoped graphdiyne with hydrogen molecules on desorption temperature and storage efficiency. Materials Today Energy, 2020, 16, 100421.	4.7	8
151	Molecules versus Nanoparticles: Identifying a Reactive Molecular Intermediate in the Synthesis of Ternary Coinage Metal Chalcogenides. Inorganic Chemistry, 2020, 59, 7727-7738.	4.0	10
152	Metal-functionalized 2D boron sulfide monolayer material enhancing hydrogen storage capacities. Journal of Applied Physics, 2020, 127, .	2.5	19
153	Structural Phase Transitions, Electronic Properties, and Hardness of RuB ₄ under High Pressure in Comparison with FeB ₄ and OsB ₄ . Journal of Physical Chemistry C, 2020, 124, 14804-14810.	3.1	20
154	Hydrogen storage characteristics of Li and Na decorated 2D boron phosphide. Sustainable Energy and Fuels, 2020, 4, 4538-4546.	4.9	49
155	Structure-based drug designing and immunoinformatics approach for SARS-CoV-2. Science Advances, 2020, 6, eabb8097.	10.3	138
156	Exploring the Possibility of βâ€Phase Arsenicâ€Phosphorus Polymorph Monolayer as Anode Materials for Sodiumâ€Ion Batteries. Advanced Theory and Simulations, 2020, 3, 2000023.	2.8	14
157	Effect of Cycling Ion and Solvent on the Redox Chemistry of Substituted Quinones and Solvent-Induced Breakdown of the Correlation between Redox Potential and Electron-Withdrawing Power of Substituents. Journal of Physical Chemistry C, 2020, 124, 13609-13617.	3.1	22
158	Enhancement of hydrogen storage capacity on co-functionalized GaS monolayer under external electric field. International Journal of Hydrogen Energy, 2020, 45, 12384-12393.	7.1	24
159	Strain-Engineered Metal-Free h-B ₂ O Monolayer as a Mechanocatalyst for Photocatalysis and Improved Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 7884-7892.	3.1	27
160	Capacity enhancement of polylithiated functionalized boron nitride nanotubes: an efficient hydrogen storage medium. Physical Chemistry Chemical Physics, 2020, 22, 15675-15682.	2.8	18
161	High exothermic dissociation in van der Waals like hexagonal two dimensional nitrogene from first–principles molecular dynamics. Applied Surface Science, 2020, 529, 146552.	6.1	11
162	Highly sensitive and selective sensing properties of modified green phosphorene monolayers towards SF6 decomposition gases. Applied Surface Science, 2020, 512, 145641.	6.1	28

#	Article	IF	Citations
163	Van der Waals induced molecular recognition of canonical DNA nucleobases on a 2D GaS monolayer. Physical Chemistry Chemical Physics, 2020, 22, 6706-6715.	2.8	5
164	Two-dimensional boron monochalcogenide monolayer for thermoelectric material. Sustainable Energy and Fuels, 2020, 4, 2363-2369.	4.9	62
165	Rectifying behavior in twisted bilayer black phosphorus nanojunctions mediated through intrinsic anisotropy. Nanoscale Advances, 2020, 2, 1493-1501.	4.6	13
166	Room-temperature conversion of Cu _{2â^'x} Se to CuAgSe nanoparticles to enhance the photocatalytic performance of their composites with TiO ₂ . Dalton Transactions, 2020, 49, 3580-3591.	3.3	13
167	Exploring two-dimensional M2NS2 (M =â€Ti, V) MXenes based gas sensors for air pollutants. Applied Materials Today, 2020, 19, 100574.	4.3	44
168	HfS2 and TiS2 Monolayers with Adsorbed C, N, P Atoms: A First Principles Study. Catalysts, 2020, 10, 94.	3 . 5	10
169	The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Materials Today Physics, 2020, 12, 100178.	6.0	82
170	Nonlinear optical characteristics of an exciton in a GaSb-capped InSb heterodot: role of size control. European Physical Journal Plus, 2020, 135, 1.	2.6	5
171	Superior sensitivity of metal functionalized boron carbide (BC3) monolayer towards carbonaceous pollutants. Applied Surface Science, 2020, 512, 145637.	6.1	15
172	Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen. Matter and Radiation at Extremes, 2020, 5, .	3.9	15
173	Fluoride ion batteries: Designing flexible M2CH2 (M=Ti or V) MXenes as high-capacity cathode materials. Nano Energy, 2020, 74, 104911.	16.0	27
174	Functionalized Two-Dimensional Nanoporous Graphene as Efficient Global Anode Materials for Li-, Na-, K-, Mg-, and Ca-lon Batteries. Journal of Physical Chemistry C, 2020, 124, 9734-9745.	3.1	28
175	Unraveling the single-atom electrocatalytic activity of transition metal-doped phosphorene. Nanoscale Advances, 2020, 2, 2410-2421.	4.6	23
176	Impact of edge structures on interfacial interactions and efficient visible-light photocatalytic activity of metal–semiconductor hybrid 2D materials. Catalysis Science and Technology, 2020, 10, 3279-3289.	4.1	37
177	Ab initio study of electronic and optical properties of penta-SiC2 and -SiGeC4 monolayers for solar energy conversion. Superlattices and Microstructures, 2020, 142, 106524.	3.1	18
178	Sensing the polar molecules MH3 (M = N, P, or As) with a Janus NbTeSe monolayer. New Journal of Chemistry, 2020, 44, 7932-7940.	2.8	20
179	Carbon-phosphide monolayer with high carrier mobility and perceptible <i>I</i> i>– <i>V</i> response for superior gas sensing. New Journal of Chemistry, 2020, 44, 3777-3785.	2.8	23
180	Superconductivity of superhydride CeH ₁₀ under high pressure. Materials Research Express, 2020, 7, 086001.	1.6	26

#	ARTICLEY of charge density wave and multiband superconductivity in layered quasi-two-dimensional materials: The case of <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
181	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mn>2</mml:mn> <mml:mi mathvariant="normal">H</mml:mi> <mml:mtext>â^3</mml:mtext> <mml:mi>Nb</mml:mi> <mml:msub><mml:mro mathvariant="normal">S<mml:mn>2</mml:mn></mml:mro></mml:msub> and	ow 2.4 mml:	mß6
182	Large pressure-induced magnetoresistance in a hybrid ferromagnet-semiconductor system: Effect of matrix modification on the spin-dependent scattering. Journal of Applied Physics, 2020, 128, 213903.	2.5	1
183	Enhanced Optoelectronic and Thermoelectric Properties by Intrinsic Structural Defects in Monolayer HfS ₂ . ACS Applied Energy Materials, 2019, 2, 6891-6903.	5.1	31
184	Probing the active sites of newly predicted stable Janus scandium dichalcogenides for photocatalytic water-splitting. Catalysis Science and Technology, 2019, 9, 4981-4989.	4.1	28
185	Inquisitive Geometric Sites in h-BN Monolayer for Alkali Earth Metal Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 19340-19346.	3.1	18
186	<i>Ab initio</i> study of a 2D h-BAs monolayer: a promising anode material for alkali-metal ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 18328-18337.	2.8	70
187	Defect Thermodynamics in Nonstoichiometric Alluaudite-Based Polyanionic Materials for Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32856-32868.	8.0	5
188	Encapsulating Trogtalite CoSe ₂ Nanobuds into BCN Nanotubes as High Storage Capacity Sodium Ion Battery Anodes. Advanced Energy Materials, 2019, 9, 1901778.	19.5	131
189	Interfacial aspect of ZnTe/ln ₂ Te ₃ heterostructures as an efficient catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 27441-27449.	10.3	41
190	Spin-entropy induced thermopower and spin-blockade effect in CoO. Physical Review B, 2019, 100, .	3.2	6
191	Investigation of the Factors That Dictate the Preferred Orientation of Lexitropsins in the Minor Groove of DNA. Journal of Medicinal Chemistry, 2019, 62, 10423-10440.	6.4	7
192	Cesium Bismuth Iodide Solar Cells from Systematic Molar Ratio Variation of CsI and Bil ₃ . Inorganic Chemistry, 2019, 58, 12040-12052.	4.0	45
193	An emerging Janus MoSeTe material for potential applications in optoelectronic devices. Journal of Materials Chemistry C, 2019, 7, 12312-12320.	5.5	85
194	Rashba Triggered Electronic and Optical Properties Tuning in Mixed Cation–Mixed Halide Hybrid Perovskites. ACS Applied Energy Materials, 2019, 2, 6990-6997.	5.1	9
195	Ab Initio Screening of Doped Mg(AlH4)2 Systems for Conversion-Type Lithium Storage. Materials, 2019, 12, 2599.	2.9	5
196	Three-Dimensional Silicon Carbide from Siligraphene as a High Capacity Lithium Ion Battery Anode Material. Journal of Physical Chemistry C, 2019, 123, 27295-27304.	3.1	26
197	Theoretical prediction of a novel aluminum nitride nanostructure: Atomistic exposure. Ceramics International, 2019, 45, 23690-23693.	4.8	3

 $Elemental \ Substitution \ of \ Two-Dimensional \ Transition \ Metal \ Dichalcogenides \ (MoSe < sub > 2 < /sub > \ and) \ Tj \ ETQq0 \ 0.00 \ rgBT \ /Overlock \ 100 \ r$

198

#	Article	IF	Citations
199	Structural Evolution of AlN Nanoclusters and the Elemental Chemisorption Characteristics: Atomistic Insight. Nanomaterials, 2019, 9, 1420.	4.1	4
200	Ultrahigh-sensitive gas sensors based on doped phosphorene: A first-principles investigation. Applied Surface Science, 2019, 497, 143660.	6.1	35
201	Mapping the sodium intercalation mechanism, electrochemical properties and structural evolution in non-stoichiometric alluaudite Na _{2+2Î} Fe _{2â~Î} (SO ₄) ₃ cathode materials. Journal of Materials Chemistry A, 2019, 7, 17446-17455.	10.3	11
202	Hybrid-Functional Study of Native Defects and W/Mo-Doped in Monoclinic-Bismuth Vanadate. Journal of Physical Chemistry C, 2019, 123, 14508-14516.	3.1	9
203	Computational Study on the Adsorption of Sodium and Calcium on Edge-Functionalized Graphene Nanoribbons, Journal of Physical Chemistry C, 2019, 123, 14895-14908. Reversible hydrogen storage properties of defect-engineered < mml:math	3.1	23
204	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="bold">C</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant="bold">4</mml:mn></mml:mrow></mml:msub><mml:mi< td=""><td>10.3</td><td>69</td></mml:mi<></mml:mrow>	10.3	69
205	mathvariant="bold">N nanosheets under ambient conditions. Functionalization and Defect-Driven Water Splitting Mechanism on a Quasi-Two-Dimensional TiO2 Hexagonal Nanosheet. ACS Applied Energy Materials, 2019, 2, 5074-5082.	5.1	8
206	Pressure-induced reentrant transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Nb</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> phases: Combined Raman scattering and x-ray diffraction study. Physical Review B, 2019, 99, .	i 3.2	5
207	Li-Functionalized Carbon Nanotubes for Hydrogen Storage: Importance of Size Effects. ACS Applied Nano Materials, 2019, 2, 3021-3030.	5.0	33
208	Anticarcinogenic activity of blue fluorescent hexagonal boron nitride quantum dots: as an effective enhancer for DNA cleavage activity of anticancer drug doxorubicin. Materials Today Bio, 2019, 1, 100001.	5.5	13
209	Enhancement in hydrogen storage capacities of light metal functionalized Boron–Graphdiyne nanosheets. Carbon, 2019, 147, 199-205.	10.3	100
210	A sub 20 nm metal-conjugated molecule junction acting as a nitrogen dioxide sensor. Nanoscale, 2019, 11, 6571-6575.	5.6	12
211	Ground–state structure of semiconducting and superconducting phases in xenon carbides at high pressure. Scientific Reports, 2019, 9, 2459.	3.3	19
212	Modelling high-performing batteries with Mxenes: The case of S-functionalized two-dimensional nitride Mxene electrode. Nano Energy, 2019, 58, 877-885.	16.0	100
213	The influence of edge structure on the optoelectronic properties of Si2BN quantum dot. Journal of Applied Physics, 2019, 126, .	2.5	17
214	Effect of electric field on optoelectronic properties of indiene monolayer for photoelectric nanodevices. Scientific Reports, 2019, 9, 17300.	3.3	18
215	Emergence of Si ₂ BN Monolayer as Efficient HER Catalyst under Co-functionalization Influence. ACS Applied Energy Materials, 2019, 2, 8441-8448.	5.1	18
216	Low energy band gap state in compressed needlelike structure of CdSb:Ni. Applied Physics Letters, 2019, 115, 252101.	3.3	0

#	Article	IF	Citations
217	Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature, 2019, 573, 558-562.	27.8	78
218	Improving the electrical conductivity of Siligraphene SiC7 by strain. Optik, 2019, 177, 118-122.	2.9	13
219	Role of a uniform magnetic field on the energy spectrum of a single donor in a core/shell spherical quantum dot. Chinese Journal of Physics, 2019, 57, 189-194.	3.9	8
220	Efficient and selective sensing of nitrogen-containing gases by Si2BN nanosheets under pristine and pre-oxidized conditions. Applied Surface Science, 2019, 469, 775-780.	6.1	78
221	Composition dependent tuning of electronic and magnetic properties in transition metal substituted Rock-salt MgO. Journal of Magnetism and Magnetic Materials, 2019, 475, 44-53.	2.3	3
222	Half metallic ferromagnetic behavior in (Ga, Cr)N and (Ga, Cr, V)N compounds for spintronic technologies: Ab initio and Monte Carlo methods. Journal of Magnetism and Magnetic Materials, 2019, 477, 220-225.	2.3	18
223	Defect formations and pH-dependent kinetics in kröhnkite Na2Fe(SO4)2·2H2O based cathode for sodium-ion batteries: Resembling synthesis conditions through chemical potential landscape. Nano Energy, 2019, 55, 123-134.	16.0	13
224	Metal functionalized inorganic nano-sheets as promising materials for clean energy storage. Applied Surface Science, 2019, 471, 887-892.	6.1	39
225	TiS ₂ Monolayer as an Emerging Ultrathin Bifunctional Catalyst: Influence of Defects and Functionalization. ChemPhysChem, 2019, 20, 608-617.	2.1	24
226	Tailoring the capability of carbon nitride (C ₃ N) nanosheets toward hydrogen storage upon light transition metal decoration. Nanotechnology, 2019, 30, 075404.	2.6	40
227	Dynamic magneto-caloric effect of a C70 fullerene: Dynamic Monte Carlo. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 191-196.	2.7	16
228	Theoretical investigation of the structural, electronic, and thermodynamic properties of CdS1- $\langle i \rangle x \langle i \rangle Se \langle i \rangle x \langle i \rangle$ alloys. Journal of Applied Physics, 2018, 123, .	2.5	10
229	Hydrogenated defective graphene as an anode material for sodium and calcium ion batteries: A density functional theory study. Carbon, 2018, 136, 73-84.	10.3	52
230	Hysteresis loops and dielectric properties of a mixed spin Blume–Capel Ising ferroelectric nanowire. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 499-506.	2.6	32
231	Buckminsterfullerene hybridized zinc oxide tetrapods: defects and charge transfer induced optical and electrical response. Nanoscale, 2018, 10, 10050-10062.	5.6	44
232	In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. Nano Energy, 2018, 49, 283-289.	16.0	44
233	Identifying the tuning key of disproportionation redox reaction in terephthalate: A Li-based anode for sustainable organic batteries. Nano Energy, 2018, 47, 301-308.	16.0	17
234	2D lateral heterostructures of group-III monochalcogenide: Potential photovoltaic applications. Applied Physics Letters, 2018, 112, .	3.3	66

#	Article	IF	CITATIONS
235	Quantum Monte Carlo study of dynamic magnetic properties of nano-graphene. Journal of Magnetism and Magnetic Materials, 2018, 460, 223-228.	2.3	35
236	Structural prediction of host-guest structure in lithium at high pressure. Scientific Reports, 2018, 8, 5278.	3.3	21
237	Chemical Bonding of Unique CO on Fe(100). Journal of Physical Chemistry C, 2018, 122, 9062-9074.	3.1	1
238	The High-Pressure Superconducting Phase of Arsenic. Scientific Reports, 2018, 8, 3026.	3.3	16
239	Theoretical aspects in structural distortion and the electronic properties of lithium peroxide under high pressure. Physical Chemistry Chemical Physics, 2018, 20, 9488-9497.	2.8	4
240	Enriching the hydrogen storage capacity of carbon nanotube doped with polylithiated molecules. Applied Surface Science, 2018, 444, 467-473.	6.1	24
241	Electron transport in NH 3 /NO 2 sensed buckled antimonene. Solid State Communications, 2018, 272, 1-7.	1.9	10
242	Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Alkaliâ€ion Batteries. Chemistry - an Asian Journal, 2018, 13, 299-310.	3.3	4
243	First-principles investigation of CO adsorption on pristine, C-doped and N-vacancy defected hexagonal AlN nanosheets. Applied Surface Science, 2018, 439, 196-201.	6.1	47
244	Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials. Nano Research, 2018, 11, 3802-3813.	10.4	48
245	Improving electron transport in the hybrid perovskite solar cells using CaMnO3-based buffer layer. Nano Energy, 2018, 45, 287-297.	16.0	19
246	Recombination energy for negatively charged excitons inside type-II core/shell spherical quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 101, 125-130.	2.7	6
247	The surface energy and stress of metals. Surface Science, 2018, 674, 51-68.	1.9	68
248	Defected and Functionalized Germanene-based Nanosensors under Sulfur Comprising Gas Exposure. ACS Sensors, 2018, 3, 867-874.	7.8	53
249	Exploring pristine and Li-doped Mg2NiH4 compounds with potential lithium-storage properties: Ab initio insight. Journal of Alloys and Compounds, 2018, 746, 140-146.	5.5	8
250	The magnetic properties and hysteresis behaviors of the mixed spin- $(1/2,1)$ Ferrimagnetic nanowire. Physica B: Condensed Matter, 2018, 549, 82-86.	2.7	8
251	Theoretical Evidence behind Bifunctional Catalytic Activity in Pristine and Functionalized Al ₂ C Monolayers. ChemPhysChem, 2018, 19, 148-152.	2.1	11
252	Adsorption characteristics of DNA nucleobases, aromatic amino acids and heterocyclic molecules on silicene and germanene monolayers. Sensors and Actuators B: Chemical, 2018, 255, 2713-2720.	7.8	56

#	Article	lF	CITATIONS
253	Mapping the relationship among composition, stacking fault energy and ductility in Nb alloys: A first-principles study. Acta Materialia, 2018, 144, 853-861.	7.9	32
254	Mechanical properties investigation on single-wall ZrO 2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 98, 23-28.	2.7	1
255	A combined theoretical and experimental approach of a new ternary metal oxide in molybdate composite for hybrid energy storage capacitors. APL Materials, 2018, 6, .	5.1	26
256	The ideal commensurate value of Sc and the superconducting phase under high pressure. Journal of Applied Physics, 2018, 124, 225901.	2.5	23
257	Multifunctional ammonium fuel cell using compost as a novel electro-catalyst. Journal of Power Sources, 2018, 402, 221-228.	7.8	13
258	Theoretical investigation of structural, electronic and optical properties of (BeS)1/(BeSe)1, (BeSe)1/(BeTe)1 and (BeS)1/(BeTe)1 superlattices under pressure. Chemical Physics Letters, 2018, 713, 71-84.	2.6	5
259	Effect of pressure on the structure stability, electronic structure and band gap engineering in Zn16O1S15. Computational Condensed Matter, 2018, 17, e00332.	2.1	1
260	Accounting for the thermo-stability of PdHx (xÂ=Â1–3) by density functional theory. International Journal of Hydrogen Energy, 2018, 43, 18372-18381.	7.1	12
261	Structural, elastic, electronic and optical properties of novel antiferroelectric KNaX (X = S, Se, and Te) compounds: First principles study. Physica B: Condensed Matter, 2018, 545, 18-29.	2.7	12
262	Light metal decorated graphdiyne nanosheets for reversible hydrogen storage. Nanotechnology, 2018, 29, 355401.	2.6	83
263	Superior sensing affinities of acetone towards vacancy induced and metallized ZnO monolayers. Applied Surface Science, 2018, 456, 711-716.	6.1	15
264	Current computational trends in polyanionic cathode materials for Li and Na batteries. Journal of Physics Condensed Matter, 2018, 30, 283003.	1.8	13
265	Borophene's tryst with stability: exploring 2D hydrogen boride as an electrode for rechargeable batteries. Physical Chemistry Chemical Physics, 2018, 20, 22008-22016.	2.8	45
266	Scrupulous Probing of Bifunctional Catalytic Activity of Borophene Monolayer: Mapping Reaction Coordinate with Charge Transfer. ACS Applied Energy Materials, 2018, 1, 3571-3576.	5.1	32
267	Achieving ultrahigh carrier mobilities and opening the band gap in two-dimensional Si ₂ BN. Physical Chemistry Chemical Physics, 2018, 20, 21716-21723.	2.8	30
268	Simultaneous enhancement in charge separation and onset potential for water oxidation in a BiVO ₄ photoanode by W–Ti codoping. Journal of Materials Chemistry A, 2018, 6, 16965-16974.	10.3	27
269	Hydrogenic donor in a CdSe/CdS quantum dot: Effect of electric field strength, nanodot shape and dielectric environment on the energy spectrum. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 29-35.	2.7	7
270	Graphitic carbon nitride nano sheets functionalized with selected transition metal dopants: an efficient way to store CO ₂ . Nanotechnology, 2018, 29, 415502.	2.6	30

#	Article	IF	Citations
271	First principles study of structural, mechanical and electronic properties of the ternary alkali metal oxides KNaO and RbNaO. Chemical Physics Letters, 2018, 706, 684-693.	2.6	5
272	Magnetoelectronic properties of Vanadium impurities co-doped (Cd, Cr)Te compound for spintronic devices: First principles calculations and Monte Carlo simulation. Journal of Magnetism and Magnetic Materials, 2018, 466, 420-429.	2.3	13
273	Strain controlled electronic and transport anisotropies in two-dimensional borophene sheets. Physical Chemistry Chemical Physics, 2018, 20, 22952-22960.	2.8	53
274	Tuning electronic transport properties of zigzag graphene nanoribbons with silicon doping and phosphorus passivation. AIP Advances, 2018, 8, 085123.	1.3	9
275	Magnetoelectronic properties of GaN codoped with (V, Mn) impurities for spintronic devices: Ab-initio and Monte Carlo studies. Physica A: Statistical Mechanics and Its Applications, 2018, 512, 1249-1259.	2.6	15
276	Effect of defects on adsorption characteristics of AlN monolayer towards SO2 and NO2: Ab initio exposure. Applied Surface Science, 2018, 462, 615-622.	6.1	42
277	New Concept on Photocatalytic Degradation of Thiophene Derivatives: Experimental and DFT Studies. Journal of Physical Chemistry C, 2018, 122, 15646-15651.	3.1	9
278	Theoretical Investigation of Metallic Nanolayers For Charge-Storage Applications. ACS Applied Energy Materials, 2018, 1, 3428-3433.	5.1	19
279	Efficient Adsorption Characteristics of Pristine and Silverâ€Doped Graphene Oxide Towards Contaminants: A Potential Membrane Material for Water Purification?. ChemPhysChem, 2018, 19, 2250-2257.	2.1	14
280	Ferromagnetism induced by Cr, V single and double impurities doped BN from Ab-initio and Monte Carlo study. Computational Condensed Matter, 2018, 16, e00317.	2.1	3
281	Hexagonal Boron Nitride (hâ€BN) Sheets Decorated with OLi, ONa, and Li ₂ F Molecules for Enhanced Energy Storage. ChemPhysChem, 2017, 18, 513-518.	2.1	41
282	Ab initio insight into graphene nanofibers to destabilize hydrazine borane for hydrogen release. Chemical Physics Letters, 2017, 669, 110-114.	2.6	3
283	A comparative study of hydrogen evolution reaction on pseudo-monolayer WS ₂ and PtS ₂ : insights based on the density functional theory. Catalysis Science and Technology, 2017, 7, 687-692.	4.1	51
284	Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application. Journal of Materials Chemistry A, 2017, 5, 4430-4454.	10.3	61
285	Sodium-intercalated bulk graphdiyne as an anode material for rechargeable batteries. Journal of Power Sources, 2017, 343, 354-363.	7.8	66
286	Role of relativity in high-pressure phase transitions of thallium. Scientific Reports, 2017, 7, 42983.	3.3	4
287	Hierarchical Aerographite nano-microtubular tetrapodal networks based electrodes as lightweight supercapacitor. Nano Energy, 2017, 34, 570-577.	16.0	67
288	Enhanced electrochemical performance of LiMnBO3 with conductive glassy phase: a prospective cathode material for lithium-ion battery. Ionics, 2017, 23, 1645-1653.	2.4	16

#	Article	IF	Citations
289	Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites. ACS Energy Letters, 2017, 2, 837-845.	17.4	187
290	Manipulating energy storage characteristics of ultrathin boron carbide monolayer under varied scandium doping. RSC Advances, 2017, 7, 8598-8605.	3.6	30
291	Monte Carlo simulation of dielectric properties of a mixed spin-3/2 and spin-5/2 Ising ferrielectric nanowires. Ferroelectrics, 2017, 507, 58-68.	0.6	21
292	Unsaturated surface in <scp>CO</scp> saturation. Surface and Interface Analysis, 2017, 49, 892-897.	1.8	2
293	Effect of Transition Metal Cations on Stability Enhancement for Molybdate-Based Hybrid Supercapacitor. ACS Applied Materials & Supercapacitor. ACS Applied Materials & Supercapacitor. ACS Applied Materials & Supercapacitor.	8.0	82
294	Enabling the Electrochemical Activity in Sodium Iron Metaphosphate [NaFe(PO ₃) ₃] Sodium Battery Insertion Material: Structural and Electrochemical Insights. Inorganic Chemistry, 2017, 56, 5918-5929.	4.0	29
295	Theoretical investigation on thermodynamic properties of ZnO1â^xTexalloys. Materials Research Express, 2017, 4, 055901.	1.6	5
296	Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16148-16158.	8.0	142
297	Reentrant phenomenon in a transverse spin-1 Ising nanoparticle with diluted magnetic sites. Journal of Magnetism and Magnetic Materials, 2017, 442, 53-61.	2.3	17
298	Magnetic order and phase diagram of magnetic alloy system: Mg <i></i> Ni _{1â€"<i>×</i>} O alloy. Physica Status Solidi (B): Basic Research, 2017, 254, 1700085.	1.5	4
299	Exploring Doping Characteristics of Various Adatoms on Single-Layer Stanene. Journal of Physical Chemistry C, 2017, 121, 7667-7676.	3.1	31
300	Anisotropic distortion and Lifshitz transition in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{l}_{\pm}</mml:mi></mml:math> -Hf under pressure. Physical Review B, 2017, 95, .	3.2	14
301	Stability of Ar(H ₂) ₂ to 358 GPa. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3596-3600.	7.1	23
302	Assessing the electrochemical properties of polypyridine and polythiophene for prospective applications in sustainable organic batteries. Physical Chemistry Chemical Physics, 2017, 19, 3307-3314.	2.8	15
303	Some hysteresis loop features of 2D magnetic spin-1 Ising nanoparticle: shape lattice and single-ion anisotropy effects. Chinese Journal of Physics, 2017, 55, 2224-2235.	3.9	8
304	Improving Sensing of Sulfur-Containing Gas Molecules with ZnO Monolayers by Implanting Dopants and Defects. Journal of Physical Chemistry C, 2017, 121, 24365-24375.	3.1	35
305	Prediction of huge magnetic anisotropies in 5 <i>d</i> transition metallocenes. Journal of Physics Condensed Matter, 2017, 29, 435802.	1.8	4
306	Mechanistic study of Na-ion diffusion and small polaron formation in Kröhnkite Na ₂ Fe(SO ₄) ₂ Â-2H ₂ O based cathode materials. Journal of Materials Chemistry A, 2017, 5, 21726-21739.	10.3	18

#	Article	IF	CITATIONS
307	The curious case of two dimensional Si2BN: A high-capacity battery anode material. Nano Energy, 2017, 41, 251-260.	16.0	121
308	Tuning the binding energy of on-center donor in CdSe/ZnTe core/shell quantum dot by spatial parameters and magnetic field strength. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 96-99.	2.7	12
309	Disentangling the intricate atomic short-range order and electronic properties in amorphous transition metal oxides. Scientific Reports, 2017, 7, 2044.	3.3	19
310	Improved sensing characteristics of methane over ZnO nano sheets upon implanting defects and foreign atoms substitution. Nanotechnology, 2017, 28, 415502.	2.6	17
311	Shallow donor inside core/shell spherical nanodot: Effect of nanostructure size and dielectric environment on energy spectrum. Superlattices and Microstructures, 2017, 111, 976-982.	3.1	17
312	Critical behavior of the resistivity of GaMnAs near the Curie temperature. Solid State Communications, 2017, 263, 38-41.	1.9	4
313	Bromination-induced stability enhancement with a multivalley optical response signature in guanidinium [C(NH ₂) ₃] ⁺ -based hybrid perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 18561-18568.	10.3	8
314	High performance material for hydrogen storage: Graphenelike Si2BN solid. International Journal of Hydrogen Energy, 2017, 42, 22942-22952.	7.1	50
315	Hysteresis loop behaviors of a decorated double-walled cubic nanotube. Physica B: Condensed Matter, 2017, 524, 137-143.	2.7	7
316	Toward the Realization of 2D Borophene Based Gas Sensor. Journal of Physical Chemistry C, 2017, 121, 26869-26876.	3.1	148
317	Valence Level Character in a Mixed Perovskite Material and Determination of the Valence Band Maximum from Photoelectron Spectroscopy: Variation with Photon Energy. Journal of Physical Chemistry C, 2017, 121, 26655-26666.	3.1	98
318	Prospects of Graphene–hBN Heterostructure Nanogap for DNA Sequencing. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 39945-39952.	8.0	42
319	Divulging the Hidden Capacity and Sodiation Kinetics of Na _{<i>x</i>xxxxxxx}	3.1	19
320	Promising optical characteristics of zinc peroxide from first-principles investigation. Solid State Communications, 2017, 263, 6-9.	1.9	1
321	Graphenylene Monolayers Doped with Alkali or Alkaline Earth Metals: Promising Materials for Clean Energy Storage. Journal of Physical Chemistry C, 2017, 121, 14393-14400.	3.1	65
322	Formation and electronic properties of palladium hydrides and palladium-rhodium dihydride alloys under pressure. Scientific Reports, 2017, 7, 3520.	3.3	16
323	Na _{2.32} Co _{1.84} (SO ₄) ₃ as a new member of the alluaudite family of high-voltage sodium battery cathodes. Dalton Transactions, 2017, 46, 55-63.	3.3	52
324	Dynamic Magnetic Properties of a Mixed Spin Ising Double-Walled Ferromagnetic Nanotubes: A Dynamic Monte Carlo Study. Journal of Superconductivity and Novel Magnetism, 2017, 30, 839-844.	1.8	11

#	Article	IF	Citations
325	Studies of hypro-mellose (HPMC) functionalized ZnS:Mn fluorescent quantum dots. Journal of Materials Science: Materials in Electronics, 2017, 28, 1931-1937.	2.2	4
326	The Magnetic Properties of the Mixed Ferrimagnetic Ising System with Random Crystal Field. Journal of Superconductivity and Novel Magnetism, 2017, 30, 1247-1256.	1.8	7
327	Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catalysis Science and Technology, 2017, 7, 545-559.	4.1	345
328	Magnetic behaviors of a transverse spin-1/2 Ising cubic nanowire with core/shell structure. Physica B: Condensed Matter, 2017, 507, 51-60.	2.7	5
329	Revisiting Mg–Mg2Ni System from Electronic Perspective. Metals, 2017, 7, 489.	2.3	5
330	Hysteresis loops and dielectric properties of compositionally graded (Ba,Sr)TiO 3 thin films described by the transverse Ising model. Chinese Journal of Physics, 2016, 54, 533-544.	3.9	10
331	Magnetic properties of a diluted transverse spin-1 Ising nanocube with a longitudinal crystal-field. Proceedings of SPIE, 2016, , .	0.8	2
332	Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction. Applied Physics Letters, 2016, 109, .	3.3	86
333	High pressure driven superconducting critical temperature tuning in Sb2Se3 topological insulator. Applied Physics Letters, 2016, 108, 212601.	3.3	9
334	Rare earth functionalization effect in optical response of ZnO nano clusters. European Physical Journal D, 2016, 70, 1.	1.3	4
335	lonothermal Synthesis of High-Voltage <i>Alluaudite</i> Na _{2+2x} Fe _{2-x} (SO ₄) ₃ Sodium Insertion Compound: Structural, Electronic, and Magnetic Insights. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6982-6991.	8.0	66
336	A theoretical study of the hysteresis behaviors of a transverse spin-1/2 Ising nanocube. Journal of Magnetism and Magnetic Materials, 2016, 413, 30-38.	2.3	10
337	Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103. International Journal of Hydrogen Energy, 2016, 41, 14404-14428.	7.1	94
338	Synthesis, structural and electrochemical properties of sodium nickel phosphate for energy storage devices. Nanoscale, 2016, 8, 11291-11305.	5.6	80
339	Unveiling the thermodynamic and kinetic properties of Na $<$ sub $>$ x $<$ lsub $>$ Fe(SO $<$ sub $>$ 4 $<$ lsub $>$) $<$ sub $>$ 2 $<$ lsub $>$ (x = Oâ \in "2): toward a high-capacity and low-cost cathode material. Journal of Materials Chemistry A, 2016, 4, 17960-17969.	10.3	17
340	Superhard Semiconducting Phase of Osmium Tetraboride Stabilizing at 11 GPa. Journal of Physical Chemistry C, 2016, 120, 23165-23171.	3.1	14
341	High pressure-induced distortion in face-centered cubic phase of thallium. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11143-11147.	7.1	12
342	Sensing Characteristics of Phosphorene Monolayers toward PH ₃ and AsH ₃ Gases upon the Introduction of Vacancy Defects. Journal of Physical Chemistry C, 2016, 120, 20428-20436.	3.1	71

#	Article	IF	CITATIONS
343	Static and Dynamical Properties of heavy actinide Monopnictides of Lutetium. Scientific Reports, 2016, 6, 29309.	3.3	20
344	Time dependent DFT investigation of the optical response in pristine and Gd doped Al2O3. RSC Advances, 2016, 6, 72537-72543.	3.6	1
345	Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery. Physical Chemistry Chemical Physics, 2016, 18, 22323-22330.	2.8	21
346	Defect and Substitution-Induced Silicene Sensor to Probe Toxic Gases. Journal of Physical Chemistry C, 2016, 120, 25256-25262.	3.1	81
347	Role of vacancies, light elements and rare-earth metals doping in CeO2. Scientific Reports, 2016, 6, 31345.	3.3	40
348	Electronic transitions induced by short-range structural order in amorphous <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2<td>mn₃.⊉mm</td><td>ll:m≊ฃb></td></mml:mn></mml:msub></mml:math>	mn ₃. ⊉mm	ll:m ≊ฃ b>
349	Computational Evaluation of Lithium-Functionalized Carbon Nitride (g-C ₆ N ₈) Monolayer as an Efficient Hydrogen Storage Material. Journal of Physical Chemistry C, 2016, 120, 25180-25188.	3.1	76
350	Some characteristic behaviours of a spin-1/2 Ising nanoparticle. Journal of Physics: Conference Series, 2016, 758, 012023.	0.4	2
351	Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals. Scientific Reports, 2016, 6, 26000.	3.3	16
352	2D-HfS ₂ as an efficient photocatalyst for water splitting. Catalysis Science and Technology, 2016, 6, 6605-6614.	4.1	71
353	First principles design of Li functionalized hydrogenated h-BN nanosheet for hydrogen storage. International Journal of Hydrogen Energy, 2016, 41, 14437-14446.	7.1	65
354	Density Functional Theory Study of Hydrogen Adsorption in a Tiâ€Decorated Mgâ€Based Metal–Organic Frameworkâ€74. ChemPhysChem, 2016, 17, 879-884.	2.1	25
355	Magnetic properties of a diluted spin-1/2 Ising nanocube. Physica A: Statistical Mechanics and Its Applications, 2016, 443, 385-398.	2.6	19
356	Investigation of a core/shell Ising nanoparticle: Thermal and magnetic properties. Physica B: Condensed Matter, 2016, 481, 124-132.	2.7	10
357	Reversible Hydrogen Uptake by BN and BC ₃ Monolayers Functionalized with Small Fe Clusters: A Route to Effective Energy Storage. Journal of Physical Chemistry A, 2016, 120, 2009-2013.	2.5	39
358	Augmenting the sensing aptitude of hydrogenated graphene by crafting with defects and dopants. Sensors and Actuators B: Chemical, 2016, 228, 317-321.	7.8	44
359	Evaluating bulk Nb2O2F3 for Li-battery electrode applications. Physical Chemistry Chemical Physics, 2016, 18, 3530-3535.	2.8	0
360	Phase diagrams of a transverse cubic nanowire with diluted surface shell. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	6

#	Article	IF	Citations
361	Na ₂ M ₂ (SO ₄) ₃ (M = Fe, Mn, Co and Ni): towards high-voltage sodium battery applications. Physical Chemistry Chemical Physics, 2016, 18, 9658-9665.	2.8	40
362	Rationalizing the Hydrogen and Oxygen Evolution Reaction Activity of Two-Dimensional Hydrogenated Silicene and Germanene. ACS Applied Materials & Silicene and Germanene. ACS Applied Materials & Silicene and Germanene.	8.0	69
363	Adsorption mechanism of graphene-like ZnO monolayer towards CO ₂ molecules: enhanced CO ₂ capture. Nanotechnology, 2016, 27, 015502.	2.6	69
364	Predicting electrochemical properties and ionic diffusion in Na _{2+2x} Mn _{2â^'x} (SO ₄) ₃ : crafting a promising high voltage cathode material. Journal of Materials Chemistry A, 2016, 4, 451-457.	10.3	21
365	Dynamic atmospheres and winds of cool luminous giants. Astronomy and Astrophysics, 2016, 594, A108.	5.1	71
366	Cooperative Gold Nanoparticle Stabilization by Acetylenic Phosphaalkenes. Angewandte Chemie - International Edition, 2015, 54, 10634-10638.	13.8	15
367	Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene. Scientific Reports, 2015, 5, 17560.	3.3	45
368	Towards a new class of heavy ion doped magnetic semiconductors for room temperature applications. Scientific Reports, 2015, 5, 17053.	3.3	19
369	Insights in the electronic structure and redox reaction energy in LiFePO4 battery material from an accurate Tran-Blaha modified Becke Johnson potential. Journal of Applied Physics, 2015, 118, 125107.	2.5	1
370	Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds. Scientific Reports, 2015, 5, 14431.	3.3	21
371	Stability of a new cubic monoxide of Thorium under pressure. Scientific Reports, 2015, 5, 13740.	3.3	7
372	Effect of uniaxial strain on the site occupancy of hydrogen in vanadium from density-functional calculations. Scientific Reports, 2015, 5, 10301.	3.3	16
373	Sensing Characteristics of a Grapheneâ€ike Boron Carbide Monolayer towards Selected Toxic Gases. ChemPhysChem, 2015, 16, 3511-3517.	2.1	25
374	Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem, 2015, 8, 2789-2825.	6.8	302
375	Improvement in Hydrogen Desorption from β―and γâ€MgH ₂ upon Transitionâ€Metal Doping. ChemPhysChem, 2015, 16, 2557-2561.	2.1	22
376	Pressure-induced zigzag phosphorus chain and superconductivity in boron monophosphide. Scientific Reports, 2015, 5, 8761.	3.3	16
377	Kaolinite: Defect defined material properties $\hat{a}\in$ A soft X-ray and first principles study of the band gap. Journal of Electron Spectroscopy and Related Phenomena, 2015, 202, 11-15.	1.7	10
378	Electron transport properties of a single-walled carbon nanotube in the presence of hydrogen cyanide: first-principles analysis. Journal of Molecular Modeling, 2015, 21, 173.	1.8	15

#	Article	IF	Citations
379	Substitution induced band structure shape tuning in hybrid perovskites (CH ₃ NH ₃ Pb _{1â^²x} Sn _x I ₃) for efficient solar cell applications. RSC Advances, 2015, 5, 107497-107502.	3.6	44
380	A new, layered monoclinic phase of Co ₃ O ₄ at high pressure. Physical Chemistry Chemical Physics, 2015, 17, 19957-19961.	2.8	6
381	Polyfulvenes: Polymers with "Handles―That Enable Extensive Electronic Structure Tuning. Journal of Physical Chemistry C, 2015, 119, 25726-25737.	3.1	14
382	Unveiling the charge migration mechanism in Na ₂ O ₂ : implications for sodium–air batteries. Physical Chemistry Chemical Physics, 2015, 17, 8203-8209.	2.8	30
383	Investigation of the surface shell effects on the magnetic properties of a transverse antiferromagnetic Ising nanocube. Superlattices and Microstructures, 2015, 80, 151-168.	3.1	18
384	Pressure control of magnetic clusters in strongly inhomogeneous ferromagnetic chalcopyrites. Scientific Reports, 2015, 5, 7720.	3.3	11
385	Establishing the most favorable metal–carbon bond strength for carbon nanotube catalysts. Journal of Materials Chemistry C, 2015, 3, 3422-3427.	5.5	36
386	Hydrogen storage properties of light metal adatoms (Li, Na) decorated fluorographene monolayer. Nanotechnology, 2015, 26, 275401.	2.6	28
387	Thermodynamic Properties of the Core/Shell Antiferromagnetic Ising Nanocube. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3127-3133.	1.8	8
388	The effect of impurities in ultra-thin hydrogenated silicene and germanene: a first principles study. Physical Chemistry Chemical Physics, 2015, 17, 22210-22216.	2.8	30
389	Na _{2.44} Mn _{1.79} (SO ₄) ₃ : a new member of the alluaudite family of insertion compounds for sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 18564-18571.	10.3	99
390	Defect Engineered g-C ₃ N ₄ for Efficient Visible Light Photocatalytic Hydrogen Production. Chemistry of Materials, 2015, 27, 4930-4933.	6.7	401
391	Highly Sensitive and Selective Gas Detection Based on Silicene. Journal of Physical Chemistry C, 2015, 119, 16934-16940.	3.1	174
392	Complementing the adsorption energies of CO $<$ sub $>$ 2 $<$ /sub $>$, H $<$ sub $>$ 2 $<$ /sub $>$ S and NO $<$ sub $>$ 2 $<$ /sub $>$ to h-BN sheets by doping with carbon. Europhysics Letters, 2015, 109, 57008.	2.0	24
393	Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte. Dalton Transactions, 2015, 44, 20108-20120.	3.3	50
394	The effect of morphology and confinement on the high-pressure phase transition in ZnO nanostructure. Journal of Applied Physics, 2015, 117, .	2.5	4
395	B–N@Graphene: Highly Sensitive and Selective Gas Sensor. Journal of Physical Chemistry C, 2015, 119, 24827-24836.	3.1	112
396	Manipulating carriers' spin polarization in the Heusler alloy Mn2CoAl. RSC Advances, 2015, 5, 73814-73819.	3.6	9

#	Article	IF	CITATIONS
397	Effect of Seeding Layers on Hysteresis Loops and Phase Transition of the Ferroelectric Thin Film. Ferroelectrics, 2015, 478, 1-10.	0.6	O
398	BC ₃ Sheet Functionalized with Lithiumâ€Rich Species Emerging as a Reversible Hydrogen Storage Material. ChemPhysChem, 2015, 16, 634-639.	2.1	9
399	Disorder-induced Room Temperature Ferromagnetism in Glassy Chromites. Scientific Reports, 2015, 4, 4686.	3.3	12
400	The Magnetic Properties of Multi-surface Transverse Ferroelectric Ising Thin Films. Journal of Superconductivity and Novel Magnetism, 2015, 28, 877-883.	1.8	0
401	Magnetic Properties of a Transverse Ising Nanoparticle. Journal of Superconductivity and Novel Magnetism, 2015, 28, 885-890.	1.8	10
402	Magnetic properties of a single transverse Ising ferrimagnetic nanoparticle. Physica B: Condensed Matter, 2015, 456, 142-150.	2.7	17
403	Crafting ferromagnetism in Mn-doped MgO surfaces with p-type defects. Science and Technology of Advanced Materials, 2014, 15, 035008.	6.1	8
404	Structural phase transition and metallization in compressed SrC2. Science Bulletin, 2014, 59, 5269-5271.	1.7	6
405	Enhancement of energy storage capacity of Mg functionalized silicene and silicane under external strain. Applied Physics Letters, 2014, 105, .	3.3	29
406	A computational study of potential molecular switches that exploit Baird's rule on excited-state aromaticity and antiaromaticity. Faraday Discussions, 2014, 174, 105-124.	3.2	22
407	Sensing propensity of a defected graphane sheet towards CO, H ₂ O and NO ₂ . Nanotechnology, 2014, 25, 325501.	2.6	53
408	Configuration―and Conformationâ€Dependent Electronicâ€Structure Variations in 1,4â€Disubstituted Cyclohexanes Enabled by a Carbonâ€ŧoâ€Silicon Exchange. Chemistry - A European Journal, 2014, 20, 9304-9311.	3.3	20
409	Communication: Origin of the difference between carbon nanotube armchair and zigzag ends. Journal of Chemical Physics, 2014, 140, 091102.	3.0	13
410	Electronic density-of-states of amorphous vanadium pentoxide films: Electrochemical data and density functional theory calculations. Journal of Applied Physics, 2014, 115, .	2.5	16
411	Revealing an unusual transparent phase of superhard iron tetraboride under high pressure. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17050-17053.	7.1	23
412	Hole induced Jahn Teller distortion ensuing ferromagnetism in Mn–MgO: bulk, surface and one dimensional structures. Journal of Physics Condensed Matter, 2014, 26, 265801.	1.8	3
413	Improvement in the desorption of H2 from the MgH2 (110) surface by means of doping and mechanical strain. Computational Materials Science, 2014, 86, 165-169.	3.0	9
414	Screening study of light-metal and transition-metal-doped NiTiH hydrides as Li-ion battery anode materials. Solid State Ionics, 2014, 258, 88-91.	2.7	9

#	Article	IF	CITATIONS
415	Functionalization of hydrogenated graphene by polylithiated species for efficient hydrogen storage. International Journal of Hydrogen Energy, 2014, 39, 2560-2566.	7.1	40
416	Se concentration dependent band gap engineering in ZnO1-xSex thin film for optoelectronic applications. Journal of Alloys and Compounds, 2014, 585, 94-97.	5.5	12
417	Electronic structure and ionic diffusion of green battery cathode material: Mg2Mo6S8. Solid State lonics, 2014, 261, 17-20.	2.7	23
418	Shear strain induced indirect to direct transition in band gap in AlN monolayer nanosheet. Computational Materials Science, 2014, 86, 206-210.	3.0	44
419	A theoretical study of possible point defects incorporated into \hat{l}_{\pm} -alumina deposited by chemical vapor deposition. Theoretical Chemistry Accounts, 2014, 133, 1.	1.4	4
420	Enriching physisorption of H ₂ S and NH ₃ gases on a graphane sheet by doping with Li adatoms. Physical Chemistry Chemical Physics, 2014, 16, 8100-8105.	2.8	53
421	Probing temperature-induced ordering in supersaturated Tilâ^'xAlxN coatings by electronic structure. Surface and Coatings Technology, 2014, 242, 207-213.	4.8	2
422	Band gap engineering in huge-gap semiconductor SrZrO3 for visible-light photocatalysis. International Journal of Hydrogen Energy, 2014, 39, 2042-2048.	7.1	72
423	A possible mechanism for the emergence of an additional band gap due to a Ti–O–C bond in the TiO ₂ –graphene hybrid system for enhanced photodegradation of methylene blue under visible light. RSC Advances, 2014, 4, 59890-59901.	3.6	143
424	Theoretical and experimental study of the incorporation of tobramycin and strontium-ions into hydroxyapatite by means of co-precipitation. Applied Surface Science, 2014, 314, 376-383.	6.1	9
425	High-Pressure Phase Transition of ZnO Nanorods Using Density Functional Theory. Integrated Ferroelectrics, 2014, 156, 122-128.	0.7	1
426	Strain Engineering for Phosphorene: The Potential Application as a Photocatalyst. Journal of Physical Chemistry C, 2014, 118, 26560-26568.	3.1	383
427	Dynamic stability of the single-layer transition metal dichalcogenides. Computational Materials Science, 2014, 92, 206-212.	3.0	19
428	Mono- and co-doped NaTaO ₃ for visible light photocatalysis. Physical Chemistry Chemical Physics, 2014, 16, 16085-16094.	2.8	44
429	Tweaking the magnetism of MoS2 nanoribbon with hydrogen and carbon passivation. Nanotechnology, 2014, 25, 165703.	2.6	20
430	Electronic charge transport through ZnO nanoribbons. Journal of Physics and Chemistry of Solids, 2014, 75, 1223-1228.	4.0	5
431	Design of High-Efficiency Visible-Light Photocatalysts for Water Splitting: MoS ₂ /AlN(GaN) Heterostructures. Journal of Physical Chemistry C, 2014, 118, 17594-17599.	3.1	340
432	In Search of Flexible Molecular Wires with Near Conformer-Independent Conjugation and Conductance: A Computational Study. Journal of Physical Chemistry C, 2014, 118, 5637-5649.	3.1	12

#	ARTICLE Instituted spin-small match and hysteresis behaviors of a mixed spin-small match	IF	CITATIONS
433	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si37.gif" overflow="scroll"> <mml:mrow><mml:mfrac><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><ml altimg="si38.gif" overflow="scroll" spin-<mml:math="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow><td>0.1</td><td>40</td></mml:mrow></mml:mrow></mml:mrow></mml:mrow></ml></mml:mrow></mml:mfrac></mml:mrow>	0.1	40
434	Superlattices and Microstructures, 2014, 75, 761-774. Optical and electronic properties of nanosized BiTaO ₄ and BiNbO ₄ photocatalysts: Experiment and theory. Physica Status Solidi (B): Basic Research, 2014, 251, 1034-1039.	1.5	11
435	First-principles investigations of electronic and mechanical properties for stable Ge2Sb2Te5 with van der Waals corrections. Computational Materials Science, 2014, 82, 66-69.	3.0	51
436	Dielectric Properties and Hysteresis Loops of a Ferroelectric Nanoparticle System Described by the Transverse Ising Model. Journal of Superconductivity and Novel Magnetism, 2014, 27, 2153-2162.	1.8	9
437	The dielectric properties and the hysteresis loops of the spin-1 Ising nanowire system with the effect of a negative core/shell coupling: A Monte Carlo study. Superlattices and Microstructures, 2014, 73, 121-135.	3.1	28
438	Strain-induced tunability of optical and photocatalytic properties of ZnO mono-layer nanosheet. Computational Materials Science, 2014, 91, 38-42.	3.0	22
439	Cerium; Crystal Structure and Position in The Periodic Table. Scientific Reports, 2014, 4, 6398.	3.3	31
440	Superconductivity in Strong Spin Orbital Coupling Compound Sb2Se3. Scientific Reports, 2014, 4, 6679.	3.3	62
441	A Comparison Between Hybrid Functional, GW Approach and the Bethe Salpether Equation: Optical Properties of High Pressure Phases of TiO ₂ . Science of Advanced Materials, 2014, 6, 1170-1178.	0.7	2
442	First-principles investigation of Li ion diffusion in Li2FeSiO4. Solid State Ionics, 2013, 247-248, 8-14.	2.7	25
443	First-principles study of structural and electronic properties of gallium based nanowires. Solid State Sciences, 2013, 23, 35-41.	3.2	22
444	TiO ₂ -Based Gas Sensor: A Possible Application to SO ₂ . ACS Applied Materials & Lamp; Interfaces, 2013, 5, 8516-8522.	8.0	186
445	Layered Perovskite Sr2Ta2O7 for Visible Light Photocatalysis: A First Principles Study. Journal of Physical Chemistry C, 2013, 117, 5043-5050.	3.1	47
446	Cationic–anionic mediated charge compensation on La2Ti2O7 for visible light photocatalysis. Physical Chemistry Chemical Physics, 2013, 15, 17150.	2.8	21
447	Atomistic study of promising catalyst and electrode material for memory capacitors: Platinum oxides. Computational Materials Science, 2013, 79, 804-810.	3.0	5
448	Metalâ€Functionalized Silicene for Efficient Hydrogen Storage. ChemPhysChem, 2013, 14, 3463-3466.	2.1	45
449	Hydrogen storage in polylithiated BC3 monolayer sheet. Solid State Communications, 2013, 170, 39-43.	1.9	29
450	Conductance through Carbosilane Cage Compounds: A Computational Investigation. Journal of Physical Chemistry C, 2013, 117, 21692-21699.	3.1	16

#	Article	IF	Citations
451	Pressure-induced superconductivity in CaC2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9289-9294.	7.1	65
452	Hydrogen adsorption of Li functionalized Covalent Organic Framework-366: An ab initio study. International Journal of Hydrogen Energy, 2013, 38, 14276-14280.	7.1	24
453	Anion-Doped NaTaO ₃ for Visible Light Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 22518-22524.	3.1	71
454	Atomic Diffusion in Solid Molecular Hydrogen. Scientific Reports, 2013, 3, 2340.	3.3	10
455	The R3-carbon allotrope: a pathway towards glassy carbon under high pressure. Scientific Reports, 2013, 3, 1877.	3.3	30
456	Magnetic properties of a ferromagnetic thin film with four spin interaction: A Monte Carlo simulation study. Journal of Magnetism and Magnetic Materials, 2013, 339, 127-132.	2.3	12
457	Functionalization of hydrogenated silicene with alkali and alkaline earth metals for efficient hydrogen storage. Physical Chemistry Chemical Physics, 2013, 15, 18900.	2.8	45
458	Identification of vibrational signatures from short chains of interlinked molecule–nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy. Nanoscale, 2013, 5, 4673.	5.6	14
459	Graphene oxide as a chemically tunable 2-D material for visible-light photocatalyst applications. Journal of Catalysis, 2013, 299, 204-209.	6.2	115
460	New type of possible high-pressure polymorphism in NiAs minerals in planetary cores. Physics and Chemistry of Minerals, 2013, 40, 183-193.	0.8	10
461	Magnetic Properties of Diluted Magnetic Nanowire. Journal of Superconductivity and Novel Magnetism, 2013, 26, 201-211.	1.8	17
462	Energetic and structural analysis of N2H4BH3 inorganic solid and its modified material for hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 6718-6725.	7.1	7
463	Ferromagnetism in CdOX (X=Mn and N) with and without intrinsic point defects: A density functional theory. Results in Physics, 2013, 3, 205-208.	4.1	8
464	Metal-decorated graphene oxide for ammonia adsorption. Europhysics Letters, 2013, 103, 28007.	2.0	17
465	Phase diagrams of diluted transverse Ising nanowire. Journal of Magnetism and Magnetic Materials, 2013, 336, 75-82.	2.3	30
466	Lithium transport investigation in LixFeSiO4: A promising cathode material. Solid State Communications, 2013, 173, 9-13.	1.9	12
467	Hydrogen storage properties of the pseudo binary laves phase (Sc1â^'xZrx)(Co1â^'yNiy)2 system. International Journal of Hydrogen Energy, 2013, 38, 9772-9778.	7.1	5
468	Electronic structure, mechanical and optical properties of In2O3 with hybrid density functional (HSEO6). Solid State Communications, 2013, 172, 37-40.	1.9	9

#	Article	IF	Citations
469	Electronic, mechanical and optical properties of Y2O3 with hybrid density functional (HSE06). Computational Materials Science, 2013, 71, 19-24.	3.0	32
470	Lithium storage in amorphous TiNi hydride: Electrode for rechargeable lithium-ion batteries. Materials Chemistry and Physics, 2013, 141, 348-354.	4.0	15
471	Defect-induced room temperature ferromagnetism in B-doped ZnO. Ceramics International, 2013, 39, 4609-4617.	4.8	30
472	Monte Carlo Study of Long-Range Interactions of a Ferroelectric Bilayer with Antiferroelectric Interfacial Coupling. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3075-3083.	1.8	6
473	Electronic structure of boron doped diamond: An x-ray spectroscopic study. Applied Physics Letters, 2013, 102, 162103.	3.3	6
474	Superconductivity in Topological Insulator Sb2Te3 Induced by Pressure. Scientific Reports, 2013, 3, 2016.	3.3	133
475	Tunable Assembly of sp ³ Crossâ€Linked 3D Graphene Monoliths: A Firstâ€Principles Prediction. Advanced Functional Materials, 2013, 23, 5846-5853.	14.9	59
476	Transport coefficients in diamond from <i>ab-initio</i> calculations. Applied Physics Letters, 2013, 102, 092106.	3.3	5
477	Anion–Anion Mediated Coupling in Layered Perovskite La ₂ Ti ₂ O ₇ for Visible Light Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 13845-13852.	3.1	46
478	Theoretical Study of Electronic Transport through DNA Nucleotides in a Double-Functionalized Graphene Nanogap. Journal of Physical Chemistry C, 2013, 117, 15421-15428.	3.1	86
479	Single-layer MoS2 as an efficient photocatalyst. Catalysis Science and Technology, 2013, 3, 2214.	4.1	271
480	A novel superhard BN allotrope under cold compression of h-BN. Journal of Physics Condensed Matter, 2013, 25, 122204.	1.8	43
481	Lithium and Calcium Carbides with Polymeric Carbon Structures. Inorganic Chemistry, 2013, 52, 6402-6406.	4.0	29
482	New Class of Molecular Conductance Switches Based on the $[1,3]$ -Silyl Migration from Silanes to Silenes. Journal of Physical Chemistry C, 2013, 117, 10909-10918.	3.1	11
483	Strain and doping effects on the energetics of hydrogen desorption from the MgH ₂ (001) surface. Europhysics Letters, 2013, 101, 27006.	2.0	13
484	Molecular dynamics study of amorphous Ga-doped In2O3: A promising material for phase change memory devices. Applied Physics Letters, 2013, 103, .	3.3	11
485	Stabilizing a hexagonal Ru2C via Lifshitz transition under pressure. Applied Physics Letters, 2013, 103, .	3.3	14
486	Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6. Scientific Reports, 2013, 3, 3331.	3.3	25

#	Article	IF	Citations
487	Improvement in the hydrogen desorption from MgH2 upon transition metals doping: A hybrid density functional calculations. AIP Advances, 2013 , 3 , .	1.3	11
488	Structural investigation of californium under pressure. Physical Review B, 2013, 87, .	3.2	30
489	Strain-induced stabilization of Al functionalization in graphene oxide nanosheet for enhanced NH3 storage. Applied Physics Letters, 2013, 102, .	3.3	7
490	Hybrid density functional study of electronic and optical properties of phase change memory material: Ge2Sb2Te5. Journal of Applied Physics, 2013, 113, 033510.	2.5	13
491	Mechano-switching devices from carbon wire-carbon nanotube junctions. Physical Review B, 2013, 87, .	3.2	11
492	Pure and Li-doped NiTiH: Potential anode materials for Li-ion rechargeable batteries. Applied Physics Letters, 2013, 103, 033902.	3.3	11
493	Candy Wrapper for the Earth's Inner Core. Scientific Reports, 2013, 3, 2096.	3.3	20
494	Structural and Vibrational Properties of Layered Data Storage Material: Ge ₂ Sb ₂ Te ₅ . Science of Advanced Materials, 2013, 5, 1493-1497.	0.7	10
495	Hexagonal Boron Nitride Sheet Decorated by Polylithiated Species for Efficient and Reversible Hydrogen Storage. Science of Advanced Materials, 2013, 5, 1960-1966.	0.7	5
496	C ₆₀ -mediated hydrogen desorption in Li–N–H systems. Nanotechnology, 2012, 23, 485406.	2.6	5
497	Double-functionalized nanopore-embedded gold electrodes for rapid DNA sequencing. Applied Physics Letters, 2012, 100, 023701.	3.3	41
498	Water adsorption on ZnO(101ì,,0): The role of intrinsic defects. Europhysics Letters, 2012, 97, 17014.	2.0	15
499	HYDROGEN STORAGE ENHANCEMENT VIA TRANSITION METAL DECORATION ON METAL ORGANIC FRAMEWORKS: A FIRST-PRINCIPLES STUDY. Nano, 2012, 07, 1250044.	1.0	5
500	Peierls distortion mediated reversible phase transition in GeTe under pressure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5948-5952.	7.1	67
501	Role of correlation and relativistic effects in MAX phases. Journal of Materials Science, 2012, 47, 7615-7620.	3.7	16
502	Topological Insulating in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>GeTe</mml:mi><mml:mo>/</mml:mo><mml:msub><mml:mi>Sb</mml:mi><mml:mn>Superlattice. Physical Review Letters, 2012, 109, 096802.</mml:mn></mml:msub></mml:math>	>2 <i>ग</i> . s nml:n	ın 12∤ mml:ms
503	Oxygen- and nitrogen-chemisorbed carbon nanostructures for Z-scheme photocatalysis applications. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	8
504	Functionalization of graphane with alkali and alkaline-earth metals: An insulator-to-metallic transition. Europhysics Letters, 2012, 99, 47004.	2.0	25

#	Article	IF	CITATIONS
505	Information-Theoretic Approach for the Discovery of Design Rules for Crystal Chemistry. Journal of Chemical Information and Modeling, 2012, 52, 1812-1820.	5.4	40
506	Pressure-induced amorphous-to-amorphous configuration change in Ca-Al metallic glasses. Scientific Reports, 2012, 2, 376.	3.3	47
507	Theoretical prediction of the elastic properties of body-centered cubic Fe-Ni-Mg alloys under extreme conditions. Philosophical Magazine, 2012, 92, 888-898.	1.6	2
508	Hybrid Density Functional and Molecular Dynamics Study of Promising Hydrogen Storage Materials: Double Metal Amidoboranes and Metal Amidoborane Ammoniates. Journal of Physical Chemistry C, 2012, 116, 17351-17359.	3.1	8
509	Semimetallic dense hydrogen above 260ÂGPa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9766-9769.	7.1	27
510	Semiconducting allotrope of graphene. Nanotechnology, 2012, 23, 385704.	2.6	36
511	High pressure phase determination and electronic properties of lithiumamidoborane. Applied Physics Letters, 2012, 101, 111902.	3.3	4
512	First-principles study of solid-solution hardening in steel alloys. Computational Materials Science, 2012, 55, 269-272.	3.0	32
513	Li–Na ternary amidoborane for hydrogen storage: experimental and first-principles study. Dalton Transactions, 2012, 41, 4754.	3.3	18
514	Hole mediated coupling in Sr2Nb2O7 for visible light photocatalysis. Physical Chemistry Chemical Physics, 2012, 14, 4891.	2.8	28
515	Screened hybrid density functional study on Sr2Nb2O7 for visible light photocatalysis. Applied Physics Letters, 2012, 100, .	3.3	31
516	Hybrid density functional study on SrTiO3 for visible light photocatalysis. International Journal of Hydrogen Energy, 2012, 37, 11611-11617.	7.1	67
517	Molecular Simulation for Gas Adsorption at NiO (100) Surface. ACS Applied Materials & amp; Interfaces, 2012, 4, 5691-5697.	8.0	64
518	Polylithiated (OLi2) functionalized graphane as a potential hydrogen storage material. Applied Physics Letters, 2012, 101, 243902.	3.3	11
519	Optical properties of Mg-doped VO2: Absorption measurements and hybrid functional calculations. Applied Physics Letters, 2012, 101, .	3.3	70
520	Band gap engineering in BiNbO4 for visible-light photocatalysis. Applied Physics Letters, 2012, 100, 182102.	3.3	54
521	Excellent Catalytic Effects of Graphene Nanofibers on Hydrogen Release of Sodium alanate. Journal of Physical Chemistry C, 2012, 116, 10861-10866.	3.1	33
522	Strain induced lithium functionalized graphane as a high capacity hydrogen storage material. Applied Physics Letters, 2012, 101, .	3.3	55

#	Article	IF	CITATIONS
523	Phase stability and superconductivity of strontium under pressure. Applied Physics Letters, 2012, 101, 052604.	3.3	6
524	Structural characterization of amorphous YCrO 3 from first principles. Europhysics Letters, 2012, 99, 57010.	2.0	3
525	Strain-induced topological insulating behavior in ternary chalcogenide Ge ₂ Sb ₂ Te ₅ . Europhysics Letters, 2012, 97, 27003.	2.0	15
526	Calcium doped graphane as a hydrogen storage material. Applied Physics Letters, 2012, 100, .	3.3	89
527	Electronic Structure, Optical Properties, and Photocatalytic Activities of LaFeO ₃ 3 Solid Solution. Journal of Physical Chemistry C, 2012, 116, 22767-22773.	3.1	60
528	On the stability of single-walled carbon nanotubes and their binding strengths. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	7
529	Study of electronic and optical properties of BiTaO ₄ for photocatalysis. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1593-1596.	0.8	10
530	DNA sequencing with nanopores from an ab initio perspective. Journal of Materials Science, 2012, 47, 7439-7446.	3.7	43
531	Band gap engineering by anion doping in the photocatalyst BiTaO4: First principle calculations. International Journal of Hydrogen Energy, 2012, 37, 3014-3018.	7.1	29
532	Structural, electronic and thermodynamic properties of Al- and Si-doped \hat{l}_{\pm} -, \hat{l}^{3} -, and \hat{l}^{2} -MgH2: Density functional andÂhybrid density functional calculations. International Journal of Hydrogen Energy, 2012, 37, 9112-9122.	7.1	27
533	Ab initio study of antisite defective layered Ge2Sb2Te5. Materials Chemistry and Physics, 2012, 133, 159-162.	4.0	6
534	Evidence of a medium-range ordered phase and mechanical instabilities in strontium under high pressure. Solid State Communications, 2012, 152, 1172-1175.	1.9	2
535	Electronic and mechanical properties of Cr2GeC with hybrid functional and correlation effects. Solid State Communications, 2012, 152, 1147-1149.	1.9	23
536	An ab-initio study of (Mn,Al) doped ZnO including strong correlation effects. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1095-1097.	2.7	4
537	Functionalized Boranes for Hydrogen Storage. ChemPhysChem, 2012, 13, 300-304.	2.1	22
538	Role of correlation effects in the superconducting material: InV ₆ S ₈ . Applied Physics Letters, 2011, 99, 221904.	3.3	2
539	Electronic Structure from First-Principles of LiBH ₄ ·NH ₃ , Sr(NH ₂ BH ₃) ₂ , and Li ₂ Al(BH ₄) ₅ ·6NH ₃ for Hydrogen Storage Applications. Journal of Physical Chemistry C. 2011, 115, 20036-20042.	3.1	10
540	Unveiling the complex electronic structure of amorphous metal oxides. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6355-6360.	7.1	102

#	Article	IF	Citations
541	Rhodium dihydride (RhH ₂) with high volumetric hydrogen density. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18618-18621.	7.1	78
542	Ab initio study of lithium-doped graphane for hydrogen storage. Europhysics Letters, 2011, 96, 27013.	2.0	48
543	Relativity and the Lead-Acid Battery. Physical Review Letters, 2011, 106, 018301.	7.8	100
544	Transverse Conductance of DNA Nucleotides in a Graphene Nanogap from First Principles. Nano Letters, 2011, 11, 1941-1945.	9.1	162
545	Hybrid Density Functional Calculations and Molecular Dynamics Study of Lithium Fluorosulphate, A Cathode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 2600-2603.	3.1	26
546	Optical gap and native point defects in kaolinite studied by the GGA-PBE, HSE functional, and GW approaches. Physical Review B, $2011,84$, .	3.2	40
547	Effective masses and electronic structure of diamond including electron correlation effects in first principles calculations using the GW-approximation. AIP Advances, $2011, 1, \ldots$	1.3	35
548	Phonons of the anomalous element cerium. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9342-9345.	7.1	47
549	Interference effects in phtalocyanine controlled by H-H tautomerization: Potential two-terminal unimolecular electronic switch. Physical Review B, $2011,84,\ldots$	3.2	18
550	Mechanical properties and electronic structure of the incompressible rhenium carbides and nitrides: A first-principles study. Solid State Communications, 2011, 151, 1842-1845.	1.9	20
551	Understanding the catalytic effects of H2S on CVD-growth of \hat{l}_{\pm} -alumina: Thermodynamic gas-phase simulations and density functional theory. Surface and Coatings Technology, 2011, 206, 1771-1779.	4.8	14
552	Correlation effects in the electronic and structural properties of Cr ₂ AlC. Physica Status Solidi - Rapid Research Letters, 2011, 5, 122-124.	2.4	42
553	Interplay between lattice dynamics and the low-pressure phase of simple cubic polonium. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1695-1697.	2.1	8
554	Enhanced DNA Sequencing Performance Through Edgeâ€Hydrogenation of Graphene Electrodes. Advanced Functional Materials, 2011, 21, 2674-2679.	14.9	70
555	Borane Derivatives: A New Class of Super―and Hyperhalogens. ChemPhysChem, 2011, 12, 2423-2428.	2.1	77
556	Hydrogen binding in alkali-decorated iso-reticular metal organic framework-16 based on Zn, Mg, and Ca. International Journal of Hydrogen Energy, 2011, 36, 555-562.	7.1	11
557	Thermo-physical properties of body-centered cubic iron–magnesium alloys under extreme conditions. Solid State Communications, 2011, 151, 203-207.	1.9	1
558	Vacancy or not: An insight on the intrinsic vacancies in rocksalt-structured GeSbTe alloys from ab initio calculations. Europhysics Letters, 2011, 95, 27002.	2.0	23

#	Article	IF	CITATIONS
559	High pressure, mechanical, and optical properties of ZrW2O8. Journal of Applied Physics, 2011, 109, .	2.5	8
560	Predicted Formation of Superconducting Platinum-Hydride Crystals under Pressure in the Presence of Molecular Hydrogen. Physical Review Letters, 2011, 107, 117002.	7.8	74
561	Theoretical investigation of xenon-hydrogen solids under pressure using <i>ab initio </i> DFT and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">, <mml:mi>, <mml:math mm<="" mml:math="" td=""><td>s^{3.2}</td><td>13</td></mml:math></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:math>	s ^{3.2}	13
562	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline"> <mmi:msub><mmi:mrow /><mml:mn>2</mml:mn>Sb<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>Te<mml:math< td=""><td>3.2</td><td>35</td></mml:math<></mml:math </mmi:mrow </mmi:msub>	3.2	35
563	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml: Mo- and N-doped BiNbO4 for photocatalysis applications. Applied Physics Letters, 2011, 99, . Origin of<mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.3</td><td>47</td></mml:math></mml: </mml:mrow </mml:msub>	3.3	47
564	display="inline"> <mml:mrow><mml:mi>p</mml:mi></mml:mrow> -type conductivity in layered <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:math> GeTe <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.2</td><td>41</td></mml:math>	3.2	41
565	display="inline"> <mml:mrow><mml:mo>·</mml:mo><mml:mi>m</mml:mi></mml:mrow> Sb <mml:r Water Interaction with native defects on rutile TiO2 nanowire: Ab initio calculations. Applied Physics Letters, 2011, 98, 083115.</mml:r 	math 3.3	12
566	Hybrid exchange-correlation functional study of the structural, electronic, and mechanical properties of the MAX phases. Applied Physics Letters, 2011, 98, .	3.3	9
567	Theoretical study of C ₆₀ as catalyst for dehydrogenation in LiBH ₄ . Nanotechnology, 2011, 22, 335401.	2.6	24
568	Electronic dynamics and plasmons of sodium under compression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20434-20437.	7.1	16
569	Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge ⟨sub⟩2⟨ sub⟩ Sb ⟨sub⟩2⟨ sub⟩ Te ⟨sub⟩5⟨ sub⟩ phase-change memory material. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10410-10414.	7.1	107
570	Stabilizing the defect-induced dilute magnetic semiconductors: Li-doping in GaN with Ga vacancies. Europhysics Letters, 2011, 93, 57006.	2.0	7
571	<i>Ab initio</i> study on pressure-induced change of effective Coulomb interaction in superconducting yttrium. Applied Physics Letters, 2010, 96, .	3.3	5
572	Crystal and electronic structures of lithium fluorosulphate based materials for lithium-ion batteries. Physical Review B, 2010, 82, .	3.2	24
573	Investigation on Ge5â^'x Sb x Te5 phase-change materials byÂfirst-principles method. Applied Physics A: Materials Science and Processing, 2010, 99, 961-964.	2.3	4
574	Electrochemical deposition of Bi2Te3-based thin films. Journal of Physics and Chemistry of Solids, 2010, 71, 1131-1136.	4.0	23
575	Phase stability and electronic structure of Si2Sb2Te5 phase-change material. Journal of Physics and Chemistry of Solids, 2010, 71, 1165-1167.	4.0	2
576	Anomalous temperature dependence of elastic constant c44 in V, Nb, Ta, Pd, and Pt. Journal of Physics and Chemistry of Solids, 2010, 71, 1065-1068.	4.0	9

#	Article	IF	CITATIONS
577	Dehydrogenation associated with Ti catalyst in sodium alanate. Journal of Physics and Chemistry of Solids, 2010, 71, 1073-1076.	4.0	8
578	High pressure and temperature study of hydrogen storage material BH3NH3 from ab initio calculations. Journal of Physics and Chemistry of Solids, 2010, 71, 1137-1139.	4.0	14
579	Transition metal doped MgH2: A material to potentially combine fuel-cell and battery technologies. International Journal of Hydrogen Energy, 2010, 35, 10373-10376.	7.1	20
580	Defect-induced strong ferromagnetism in Cr-doped from first-principles theory. Solid State Communications, 2010, 150, 663-665.	1.9	6
581	Mechanical properties of vanadium carbide and a ternary vanadium tungsten carbide. Solid State Communications, 2010, 150, 697-700.	1.9	51
582	First-principles investigation on the phase stability and chemical bonding of phase-change random alloys. Solid State Communications, 2010, 150, 1375-1377.	1.9	10
583	Structural, electronic and energetic properties of water adsorbed on \hat{l}^2 -Si3N4 (0001) surface: First-principles calculations. Surface Science, 2010, 604, 617-622.	1.9	12
584	Dynamical stability of body center cubic iron at the Earth's core conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9962-9964.	7.1	58
585	DNA Sequencing with nanopore-embedded bilayer-graphene nanoelectrodes. , 2010, , .		0
586	Origin of ferromagnetism in molybdenum dioxide from <i>ab initio</i> calculations. Physical Review B, 2010, 81, .	3.2	18
587	High-pressure phase transformations in carbonates. Physical Review B, 2010, 82, .	3.2	31
588	SunetÂal.Reply:. Physical Review Letters, 2010, 104, .	7.8	2
589	Tuning magnetic properties of ln ₂ O ₃ by control of intrinsic defects. Europhysics Letters, 2010, 89, 47005.	2.0	20
590	Differential conductance as a promising approach for rapid DNA sequencing with nanopore-embedded electrodes. Applied Physics Letters, 2010, 97, 043701.	3.3	16
591	Significance of Self-Trapping on Hydrogen Diffusion. Physical Review Letters, 2010, 105, 185901.	7.8	13
592	Hydrogen as promoter and inhibitor of superionicity: A case study on Li-N-H systems. Physical Review B, 2010, 82, .	3.2	12
593	General trend for pressurized superconducting hydrogen-dense materials. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2793-2796.	7.1	81
594	Assessment of a nanoparticle bridge platform for molecular electronics measurements. Nanotechnology, 2010, 21, 435204.	2.6	20

#	Article	IF	CITATIONS
595	Growth of Carbon Nanotubes from Heterometallic Palladium and Copper Catalysts. Journal of Physical Chemistry C, 2010, 114, 8115-8119.	3.1	20
596	Cumulene molecular wire conductance from first principles. Physical Review B, 2010, 81, .	3.2	43
597	Room temperature ferromagnetism in pristine MgO thin films. Applied Physics Letters, 2010, 96, .	3.3	105
598	Electronic structure and metalization of a silane-hydrogen system under high pressure investigated using density functional and GW calculations. Physical Review B, 2010, 81, .	3.2	13
599	MN+1AXN(M=Ti,A=Al,X=H) phase class materials with hydrogen: Ti4AlH3 and Ti3AlH2. Applied Physics Letters, 2010, 96, 261906.	3.3	6
600	Experimental and theoretical investigations on magnetic behavior of (Al,Co) co-doped ZnO nanoparticles. Nanoscale, 2010, 2, 1505.	5.6	16
601	Ab initio study of the structure and chemical bonding of stable Ge3Sb2Te6. Physical Chemistry Chemical Physics, 2010, 12, 1585. One-dimensional polymeric carbon structure based on five-membered rings in alkaline earth metal	2.8	37
602	dicarbides <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>BeC</mml:mtext></mml:mrow><mml:mn: display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>MgC</mml:mtext></mml:mrow><mml:mrow><mml:mn< td=""><td>0.2</td><td>21</td></mml:mn<></mml:mrow></mml:msub></mml:mrow></mml:mn:></mml:msub></mml:mrow></mml:math>	0.2	21
603	Physical Review B, 2010, 82, . Structure behavior and equation of state (EOS) of Ni2P and (Fe1â^' Ni)2P (allabogdanite) from First-principles calculations. Earth and Planetary Science Letters, 2010, 295, 578-582.	4.4	3
604	Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations. Computational Materials Science, 2010, 47, 678-684.	3.0	36
605	Equation of state (EOS) and collapse of magnetism in iron-rich meteorites at high pressure by first-principles calculations. Physics of the Earth and Planetary Interiors, 2010, 182, 175-178.	1.9	5
606	Distortions and stabilization of simple-cubic calcium at high pressure and low temperature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9965-9968.	7.1	38
607	The Role of Chargeâ^'Charge Correlations and Covalent Bonding in the Electronic Structure of Adsorbed C60: C60/Al. Journal of Physical Chemistry C, 2010, 114, 18686-18692.	3.1	3
608	Understanding from First-Principles Why LiNH2BH3·NH3BH3 Shows Improved Dehydrogenation over LiNH2BH3 and NH3BH3. Journal of Physical Chemistry C, 2010, 114, 19089-19095.	3.1	27
609	Epitaxial graphene monolayer and bilayers on Ru(0001):Ab initiocalculations. Physical Review B, 2010, 82, .	3.2	17
610	Fast DNA sequencing via transverse differential conductance. , 2010, , .		0
611	Li+ ion conductivity and diffusion mechanism in \hat{l}_{\pm} -Li3N and \hat{l}^{2} -Li3N. Energy and Environmental Science, 2010, 3, 1524.	30.8	149
612	Energetics and magnetic properties of V-doped MgO bulk and (001) surface: A GGA, <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>GGA</mml:mtext><mml:mo>+</mml:mo><mml:mi mathvariant="italic">U</mml:mi></mml:mrow></mml:math> , and hybrid density functional study. Physical Review B, 2010, 82, .	3.2	14

#	Article	IF	CITATIONS
613	Theoretical and experimental evidence of enhanced ferromagnetism in Ba and Mn cosubstituted BiFeO3. Applied Physics Letters, 2010, 96, .	3.3	80
614	Ab initio molecular dynamics study of the hydrogen-deuterium exchange in bulk lithiumborohydride (LiBH4). Applied Physics Letters, 2009, 94, 141903.	3.3	13
615	Superionicity in the hydrogen storage material <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mn>2Li</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:mrow><mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2<mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>2</mml:mn>222<</mml:math>	3:2 min :mn>	c <mark>72</mark> mml:ms <mark>u</mark>
616	Predicted High-Temperature Superconducting State in the Hydrogen-Dense Transition-Metal Hydride <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>YH</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> at 40ÅK and 17.7ÂGPa. Physical Review Letters, 2009, 103, 077002.	7.8	79
617	Determination of the Structural Parameters of an Incommensurate Phase from First Principles: The Case of Sc-II. Physical Review Letters, 2009, 102, 085701.	7.8	15
618	Energetics of Al doping and intrinsic defects in monoclinic and cubic zirconia: First-principles calculations. Physical Review B, 2009, 80, .	3.2	26
619	<i>Ab initio</i> molecular dynamics study of the hydrogen diffusion in sodium and lithium hydrides. Journal of Applied Physics, 2009, 106, .	2.5	11
620	Ab initio study of lithium and sodium iron fluorophosphate cathodes for rechargeable batteries. Applied Physics Letters, 2009, 94, 151904.	3.3	29
621	Magnetic properties of (ZnO)1/(CuO)1 (001) superlattice. Applied Physics Letters, 2009, 94, .	3.3	19
622	On the dynamical stability and metallic behavior of YH3 under pressure. Applied Physics Letters, 2009, 94, .	3.3	10
623	Stability of body-centered cubic iron–magnesium alloys in the Earth's inner core. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15560-15562.	7.1	22
624	Substitutional alloy of Ce and Al. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2515-2518.	7.1	43
625	Hydrogen diffusion in bulk and nanoclusters of MgH2 and the role of catalysts on the basis of <i>ab initio</i> molecular dynamics. Applied Physics Letters, 2009, 94, .	3.3	15
626	Potassiumâ€Modified Mg(NH ₂) ₂ /2 LiH System for Hydrogen Storage. Angewandte Chemie - International Edition, 2009, 48, 5828-5832.	13.8	181
627	Electronic structure and optical properties of solid C60. Physica B: Condensed Matter, 2009, 404, 1776-1780.	2.7	3
628	Stationary and dispersive features in resonant inelastic soft X-ray scattering at the Ge 3p resonances. Journal of Electron Spectroscopy and Related Phenomena, 2009, 173, 103-107.	1.7	2
629	Ab-initio calculations of the optical and magnetic properties of erbium silicide ErSi2. Journal of Physics and Chemistry of Solids, 2009, 70, 1378-1384.	4.0	1
630	Interplay of covalent bonding and correlation effects at molecule–metal contacts. Chemical Physics Letters, 2009, 478, 191-194.	2.6	2

#	Article	IF	CITATIONS
631	Magneto-optical Kerr effect (MOKE) of the rare-earth silicide ErSi2 using ab-initio calculations. Current Applied Physics, 2009, 9, 925-927.	2.4	0
632	Magnetic and electronic properties of 3d transition-metal-doped In ₂ O ₃ : An ab initio study. Europhysics Letters, 2009, 87, 27013.	2.0	24
633	Ferromagnetism in the potential cathode material LiNaFePO ₄ F. Europhysics Letters, 2009, 87, 18001.	2.0	4
634	Carbon Nanomaterials as Catalysts for Hydrogen Uptake and Release in NaAlH ₄ . Nano Letters, 2009, 9, 1501-1505.	9.1	200
635	A study of electron momentum density and charge transfer in W–Cu system. Journal of Alloys and Compounds, 2009, 467, 595-599.	5 . 5	6
636	Ab initio study of the phase stability and mechanical properties of 5d transition metal nitrides MN2. Journal of Alloys and Compounds, 2009, 472, 425-428.	5.5	17
637	Formation of Large Voids in the Amorphous Phase-Change Memory <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Ge</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:m 075504.<="" 102,="" 2009,="" letters,="" physical="" review="" td=""><td>i><i>S</i>b⁸√mm</td><td>l:mi><mml:m< td=""></mml:m<></td></mml:m></mml:msub></mml:math>	i> <i>S</i> b ⁸ √mm	l:mi> <mml:m< td=""></mml:m<>
638	Magnetism and band gap narrowing in Cu-doped ZnO. Applied Physics Letters, 2009, 94, .	3.3	195
639	Non-transition-metal doped diluted magnetic semiconductors. Applied Physics Letters, 2009, 94, . Structural and energetic analysis of the hydrogen storage materials< mml:math	3.3	64
640	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>NaNH</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>o</td><td>0,</td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	o 	0,
641	Physical Review B, 2009, 79, . Ab Initio Study of Molecular Hydrogen Adsorption in Covalent Organic Framework-1. Journal of Physical Chemistry C, 2009, 113, 8498-8504.	3.1	32
642	Structural, magnetic, and energetic properties of Na2FePO4F, Li2FePO4F, NaFePO4F, and LiFePO4F from <i>ab initio</i> calculations. Journal of Applied Physics, 2009, 106, .	2.5	26
643	Stability of ferromagnetic phase in Fe-doped AlH ₃ . Europhysics Letters, 2009, 85, 67006.	2.0	3
644	Electronic structure of a thermoelectric material: CsBi4Te6. Journal of Physics and Chemistry of Solids, 2008, 69, 2274-2276.	4.0	7
645	Ab initio study of the pressure effects on. Journal of Physics and Chemistry of Solids, 2008, 69, 2245-2247.	4.0	1
646	Effect of dopants on the structure and properties of Ge2Sb2Te5 studied by Ab initio calculations. Solid State Communications, 2008, 148, 113-116.	1.9	23
647	The Importance of Strong Carbonâ^'Metal Adhesion for Catalytic Nucleation of Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 463-468.	9.1	269
648	First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. Nanotechnology, 2008, 19, 125701.	2.6	160

#	Article	IF	Citations
649	Copper/Molybdenum Nanocomposite Particles as Catalysts for the Growth of Bamboo-Structured Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 12201-12206.	3.1	24
650	First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>ı>3:₹/mml:</td><td>mh> </td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	ı>3:₹/mml:	mh>
651	Study of Ti2SC under compression up to 47GPa. Journal of Alloys and Compounds, 2008, 448, L1-L4.	5.5	57
652	Synthesis and compressive behavior of Cr2GeC up to 48GPa. Journal of Alloys and Compounds, 2008, 463, 220-225.	5.5	29
653	Local structure and electronic–spin transition of Fe-bearing MgSiO3 perovskite under conditions of the Earth's lower mantle. Physics of the Earth and Planetary Interiors, 2008, 166, 77-82.	1.9	6
654	Elastic properties of iron-rich hcp Fe–Mg alloys up to Earth's core pressures. Earth and Planetary Science Letters, 2008, 271, 221-225.	4.4	11
655	The impact of system restriction in molecular dynamics applied to the melting of Ne at high pressure. Computational Materials Science, 2008, 44, 605-610.	3.0	1
656	Symmetry Breaking Induced Bandgap in Epitaxial Graphene Layers on SiC. Nano Letters, 2008, 8, 4464-4468.	9.1	154
657	Elasticity of the superconducting metals V, Nb, Ta, Mo, and W at high pressure. Physical Review B, 2008, 77, .	3.2	112
658	Anab initiostudy of S-substituted iron–nickel–silicon alloy at the Earth's inner core pressure. High Pressure Research, 2008, 28, 437-441.	1.2	3
659	Binding Strength of Sodium Ions in Cellulose for Different Water Contents. Journal of Physical Chemistry B, 2008, 112, 8985-8989.	2.6	27
660	A comparative investigation of H2 adsorption strength in Cd- and Zn-based metal organic framework-5. Journal of Chemical Physics, 2008, 129, 164104.	3.0	31
661	Functionalized Nanopore-Embedded Electrodes for Rapid DNA Sequencing. Journal of Physical Chemistry C, 2008, 112, 3456-3459.	3.1	73
662	Internal Vibrations of the Li(NH3)4+ Complex Analyzed from Ab Initio, Density Functional Theory, And the Classical Spring Network Model. Journal of Physical Chemistry A, 2008, 112, 5323-5326.	2.5	6
663	Thermodynamic analysis of hydrogen sorption reactions in Li–Mg–N–H systems. Applied Physics Letters, 2008, 92, 021907.	3.3	22
664	Cubic metallic phase of aluminum hydride showing improved hydrogen desorption. Applied Physics Letters, 2008, 92, .	3.3	18
665	Mechanical stability of TiO ₂ polymorphs under pressure: <i>ab initio</i> calculations. Journal of Physics Condensed Matter, 2008, 20, 345218.	1.8	19
666	NANOLAYERED MAX PHASES FROM <i>ab initio</i> CALCULATIONS. International Journal of Modern Physics B, 2008, 22, 4495-4499.	2.0	7

#	Article	IF	CITATIONS
667	Magnetic Fe $<$ sub $><$ i $>ni>+1</sub>AC_{<i>ni>}(<i>ni>=1, 2, 3, and A = Al, Si, Ge) phases: from<i>ab initio</i>theory. Journal of Physics Condensed Matter, 2008, 20, 064217.$	1.8	22
668	Prediction of incommensurate crystal structure in Ca at high pressure. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20627-20630.	7.1	45
669	Local structure of liquid Ge ₁ Sb ₂ Te ₄ for rewritable data storage use. Journal of Physics Condensed Matter, 2008, 20, 205102.	1.8	16
670	Novel semiconducting materials for optoelectronic applications: Al1â^'xTlxN alloys. Applied Physics Letters, 2008, 92, .	3.3	29
671	Stable nitride complex and molecular nitrogen in N doped amorphous Ge2Sb2Te5. Applied Physics Letters, 2008, 93, .	3.3	34
672	Theoretical evidence of a superconducting transition in doped silicon and germanium driven by a variation of chemical composition. Applied Physics Letters, 2008, 92, 052505.	3.3	11
673	Fast crystallization of chalcogenide glass for rewritable memories. Applied Physics Letters, 2008, 93, .	3.3	36
674	Optical properties of Ti3SiC2 and Ti4AlN3. Applied Physics Letters, 2008, 92, .	3.3	143
675	Role of catalysts in dehydrogenation of MgH ₂ nanoclusters. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8227-8231.	7.1	89
676	Melting of Na at high pressure from <i>ab initio</i> calculations. Physical Review B, 2008, 77, .	3.2	31
677	Dynamical stability of the cubic metallic phase of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><mml:mnow><</mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mnow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	3 <mark>∂</mark> mml:mr	າ ²⁶ /mml:ms
678	Electronic structure of Cu3N films studied by soft x-ray spectroscopy. Journal of Physics Condensed Matter, 2008, 20, 235212.	1.8	12
679	Anisotropy in the electronic structure of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>V</mml:mtext><mml:mn>2</mml:mn></mml:msub><mr 2008,="" 78<="" and="" b.="" by="" emission="" first-principles="" physical="" review="" soft="" spectroscopy="" td="" theory.="" x-ray=""><td>n<mark>3:2</mark> nl:mtext></td><td>GeC</td></mr></mml:mrow></mml:math>	n <mark>3:2</mark> nl:mtext>	GeC
680	High pressure structural phase transitions in Sr from <i>ab initio</i> calculations. Physical Review B, 2008, 77, .	3.2	13
681	Elemental engineering: Epitaxial uranium thin films. Physical Review B, 2008, 78, .	3.2	19
682	Structurally induced insulator-metal transition in solid oxygen: A quasiparticle investigation. Physical Review B, 2008, 77, .	3.2	17
683	<i>Ab initio</i> and classical molecular dynamics calculations of the high-pressure melting of Ne. Journal of Physics: Conference Series, 2008, 121, 012005.	0.4	3
684	High pressure structural phase transition in zircon (ZrSiO ₄). Journal of Physics: Conference Series, 2008, 121, 0220014.	0.4	4

#	Article	IF	Citations
685	Ti-induced destabilization of NaBH ₄ from first-principles theory. Journal of Physics Condensed Matter, 2008, 20, 122202.	1.8	6
686	NANOLAYERED MAX PHASES FROM <i>ab initio</i>		1
687	Prediction of MAX phases, VN+1SiCN (N=1,2), from first-principles theory. Journal of Applied Physics, 2007, 101, 013511.	2.5	16
688	Ab initioand classical molecular dynamics of neon melting at high pressure. Physical Review B, 2007, 75, .	3.2	17
689	Dehydrogenation from 3d-transition-metal-doped NaAlH4: Prediction of catalysts. Applied Physics Letters, 2007, 90, 141904.	3.3	26
690	Unique Melting Behavior in Phase-Change Materials for Rewritable Data Storage. Physical Review Letters, 2007, 98, 055505.	7.8	92
691	Noblest of All Metals Is Structurally Unstable at High Pressure. Physical Review Letters, 2007, 98, 045503.	7.8	79
692	Calculating carbon nanotube–catalyst adhesion strengths. Physical Review B, 2007, 75, .	3.2	39
693	Unusual lattice dynamics of vanadium under high pressure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16428-16431.	7.1	46
694	Dynamical stability of Fe-H in the Earth's mantle and core regions. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9168-9171.	7.1	49
695	Ab initio calculations of the elastic properties of ferropericlase Mg1â^xFexO (). Physics of the Earth and Planetary Interiors, 2007, 164, 177-185.	1.9	11
696	The unique high-pressure behavior of curium probed further using alloys. Journal of Alloys and Compounds, 2007, 444-445, 138-141.	5.5	5
697	Ab initio prediction of high-pressure structural phase transition in BaH2. Journal of Alloys and Compounds, 2007, 446-447, 405-408.	5.5	12
698	Physisorption of nucleobases on graphene: Density-functional calculations. Physical Review B, 2007, 76, .	3.2	296
699	Structural Phase Transition of Vanadium at 69ÂGPa. Physical Review Letters, 2007, 98, 085502.	7.8	115
700	Formation ofsp3Hybridized Bonds and Stability ofCaCO3at Very High Pressure. Physical Review Letters, 2007, 98, 268501.	7.8	32
701	Weak ferromagnetism in Cu-doped GaN. Applied Physics Letters, 2007, 91, .	3.3	38
702	Dynamical stability of the hardest known oxide and the cubic solar material: TiO2. Applied Physics Letters, 2007, 90, 171903.	3.3	42

#	Article	IF	CITATIONS
703	Quasiparticle and optical properties of BeH2. Journal of Physics Condensed Matter, 2007, 19, 036223.	1.8	10
704	On the structural and energetic properties of the hydrogen absorber Li2Mg(NH)2. Applied Physics Letters, 2007, 91, 091924.	3.3	14
705	Temperature-dependent elastic properties of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>α</mml:mi></mml:math> -beryllium from first principles. Physical Review B, 2007. 76	3.2	30
706	Study of the high-pressure helium phase diagram using molecular dynamics. Journal of Physics Condensed Matter, 2007, 19, 016206.	1.8	18
707	Structure of the Ge–Sb–Te phase-change materials studied by theory and experiment. Solid State Communications, 2007, 143, 240-244.	1.9	57
708	Molecular dynamics calculation of liquid iron properties and adiabatic temperature gradient in the Earth's outer core. Geophysical Journal International, 2007, 168, 890-894.	2.4	27
709	Unusual Room Temperature Ferromagnetism in Bulk Sintered GaP Doped with Copper. IEEE Transactions on Magnetics, 2007, 43, 3043-3045.	2.1	6
710	Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study. Journal of Applied Physics, 2007, 101, 123519.	2.5	312
711	Li-decorated metal–organic framework 5: A route to achieving a suitable hydrogen storage medium. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20173-20176.	7.1	232
712	Surface energy of M2AC(0001) determined by density functional theory (M=Ti,V,Cr; A=Al,Ga,Ge). Surface Science, 2007, 601, 896-899.	1.9	27
713	High-pressure synthesis and physical properties of an orthorhombic phase of chromium dioxide. Journal of Applied Physics, 2006, 99, 053909.	2.5	21
714	Tuning the structural, electronic, and optical properties of BexZn1â^'xTe alloys. Applied Physics Letters, 2006, 89, 061913.	3.3	42
715	Electronic and optical properties of RuO2 and IrO2. Physical Review B, 2006, 73, .	3.2	131
716	Ferromagnetism in Cu-doped ZnO from first-principles theory. Physical Review B, 2006, 74, .	3.2	166
717	Electronic structure of M2AlC(0001) surfaces (M = Ti,V,Cr). Journal of Physics Condensed Matter, 2006, 18, 8877-8881.	1.8	20
718	High-pressure melting of lead. Physical Review B, 2006, 73, .	3.2	30
719	Structure of Phase Change Materials for Data Storage. Physical Review Letters, 2006, 96, 055507.	7.8	293
720	Molecular dynamics study of liquid iron under high pressure and high temperature. Physical Review B, 2006, 73, .	3.2	43

#	Article	IF	CITATIONS
721	Ab initioinvestigation on the phase stability of Ti3SiC2, Ti3Si0.5Ge0.5C2, and Ti3GeC2at high pressures. High Pressure Research, 2006, 26, 127-130.	1.2	4
722	Xenon melting: Density functional theory versus diamond anvil cell experiments. Physical Review B, 2006, 74, .	3.2	29
723	Thermoelastic properties of random alloys from first-principles theory. Physical Review B, 2006, 73, .	3.2	55
724	Phase transformations between garnet and perovskite phases in the Earth's mantle: A theoretical study. Physics of the Earth and Planetary Interiors, 2006, 156, 108-116.	1.9	16
725	Structures and stability of ABO3 orthorhombic perovskites at the Earth's mantle conditions from first-principles theory. Physics of the Earth and Planetary Interiors, 2006, 157, 1-7.	1.9	37
726	Optical band-edge absorption of oxide compound SnO2. Applied Surface Science, 2006, 252, 5361-5364.	6.1	68
727	Optical properties of in situ doped and undoped titania nanocatalysts and doped titania sol–gel nanofilms. Applied Surface Science, 2006, 252, 5365-5367.	6.1	19
728	Size dependence of the electronic structure of copper nanoclusters in SiC matrix. Chemical Physics Letters, 2006, 422, 543-546.	2.6	11
729	An ab initio study of the Li-ion battery cathode material Li2FeSiO4. Electrochemistry Communications, 2006, 8, 797-800.	4.7	102
730	Electronic structure and surface structure of Cu2S nanorods from polarization dependent X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 64-70.	1.7	4
731	X-ray absorption and emission spectroscopy of ZnO nanoparticle and highly oriented ZnO microrod arrays. Microelectronics Journal, 2006, 37, 686-689.	2.0	34
732	Electronic structure and lattice dynamics of CaPd3B studied by first-principles methods. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 356, 251-254.	2.1	4
733	Deposition and characterization of ternary thin films within the Ti–Al–C system by DC magnetron sputtering. Journal of Crystal Growth, 2006, 291, 290-300.	1.5	212
734	Modeling and gradient pattern analysis of irregular SFM structures of porous silicon. Microelectronics Journal, 2006, 37, 290-294.	2.0	6
735	Electrochemical studies of the electron states of disordered electrochromic oxides. Solar Energy Materials and Solar Cells, 2006, 90, 385-394.	6.2	11
736	The elastic and optical properties of the high-pressure hydrous phase $\hat{\Gamma}$ -AlOOH. Solid State Communications, 2006, 137, 101-106.	1.9	35
737	Surface relaxation and surface stress of 4d transition metals. Surface Science, 2006, 600, 395-402.	1.9	34
738	Effect of Ti and metal vacancies on the electronic structure, stability, and dehydrogenation of Na3AlH6: Supercell band-structure formalism and gradient-corrected density-functional theory. Physical Review B, 2006, 73, .	3.2	35

#	Article	IF	CITATIONS
739	Ab initiostudy of the chemical bonding and mechanical properties of Li2SiZn. Journal of Applied Physics, 2006, 99, 053509.	2.5	2
740	Pressure-induced phase transition in Mg0.8Fe0.2O ferropericlase. Physics and Chemistry of Minerals, 2006, 33, 35-44.	0.8	24
741	Phase stability of Ti3SiC2 at elevated temperatures. Scripta Materialia, 2006, 54, 105-107.	5.2	43
742	Hydrogen Desorption in High Pressure Phases of MgH2: a Density Functional Theory Based Study. AIP Conference Proceedings, 2006, , .	0.4	0
743	Structural and magnetic properties of FeHx (x=0.25; 0.50; 0.75). AIP Conference Proceedings, 2006, , .	0.4	6
744	High-pressure structural transitions in Cm and Am0.5Cm0.5binary alloy. High Pressure Research, 2006, 26, 377-381.	1.2	0
745	Electron Transport in Stretched Monoatomic Gold Wires. Physical Review Letters, 2006, 97, 236807.	7.8	39
746	Electronic structure and chemical bonding inTi4SiC3investigated by soft x-ray emission spectroscopy and first-principles theory. Physical Review B, 2006, 74, .	3.2	40
747	Dehydrogenation mechanism in catalyst-activatedMgH2. Physical Review B, 2006, 74, .	3.2	46
748	General trend of the mechanical properties of the ternary carbidesM3SiC2(M=transitionmetal). Physical Review B, 2006, 74, .	3.2	48
749	High-temperature ferromagnetism in Cu-doped GaP by SQUID magnetometry and ferromagnetic resonance measurements. Physical Review B, 2006, 74, .	3.2	10
750	Electronic structure and chemical bonding inTi2AlCinvestigated by soft x-ray emission spectroscopy. Physical Review B, 2006, 74, .	3.2	59
751	Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model. Physical Review B, 2006, 74, .	3.2	46
752	First-principles calculations on MgO: Phonon theory versus mean-field potential approach. Journal of Applied Physics, 2006, 100, 023533.	2.5	24
753	Ab initiostudy of the Cr2AlC(0001) surface. Applied Physics Letters, 2006, 88, 161913.	3.3	27
754	Understanding mixed valent materials: Effects of dynamical core-hole screening in high-pressure x-ray spectroscopy. Physical Review B, 2006, 74, .	3.2	16
755	Coupling in nanolaminated ternary carbides studied by theoretical means: The influence of electronic potential approximations. Physical Review B, 2006, 73, .	3.2	50
756	Resonant inelastic soft x-ray scattering at double core excitations in solid LiCl. Physical Review B, 2006, 73, .	3.2	5

#	Article	IF	CITATIONS
757	ELECTRONIC STATES IN INTERCALATION MATERIALS STUDIED BY ELECTROCHEMICAL TECHNIQUES. Modern Physics Letters B, 2006, 20, 863-875.	1.9	10
758	Ab initiostudy of M2AlN (M = Ti,V,Cr). Journal of Physics Condensed Matter, 2005, 17, L15-L19.	1.8	30
759	Electronic and optical properties of wurtzite and zinc-blende TIN and AIN. Journal of Crystal Growth, 2005, 281, 151-160.	1.5	34
760	Structural phase transitions in brookite-type TiO2 under high pressure. Solid State Communications, 2005, 133, 49-53.	1.9	24
761	Magnetoresistance and Hall effect measurements of Ni to 6GPa. Journal of Magnetism and Magnetic Materials, 2005, 294, 347-358.	2.3	3
762	Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors. European Physical Journal Special Topics, 2005, 125, 181-183.	0.2	0
763	Optical properties of rhodamine 6G-doped TiO ₂ sol-gel films. European Physical Journal Special Topics, 2005, 125, 415-417.	0.2	4
764	Stability of the MgCO3 structures under lower mantle conditions. American Mineralogist, 2005, 90, 1008-1011.	1.9	44
765	A High-Pressure Structure in Curium Linked to Magnetism. Science, 2005, 309, 110-113.	12.6	112
766	Linear optical response of Si 1-x Ge x compounds. , 2005, , .		0
767	Polarization-dependent soft-x-ray absorption of a highly oriented ZnO microrod-array. Journal of Physics Condensed Matter, 2005, 17, 235-240.	1.8	11
768	Electronic and Optical Properties of TiO2. AIP Conference Proceedings, 2005, , .	0.4	0
769	Electronic origin of shearing in M2AC (M = Ti,V,Cr,A = Al,Ga). Journal of Physics Condensed Matter, 2005, 17, 7169-7176.	1.8	51
770	Electronic and optical properties of \hat{l}_{\pm} , \hat{l}_{3} , and \hat{l}_{2} phases of MgH2: A first-principles GW investigation. Journal of Applied Physics, 2005, 98, 096106.	2.5	22
771	Electronic structure of phospho-olivines LixFePO4 (x=0,1) from soft-x-ray-absorption and -emission spectroscopies. Journal of Chemical Physics, 2005, 123, 184717.	3.0	79
772	Anomalously enhanced superconductivity andab initiolattice dynamics in transition metal carbides and nitrides. Physical Review B, 2005, 72, .	3.2	84
773	Theoretical study of nitrogen vacancies in Ti4AlN3. Applied Physics Letters, 2005, 86, 031911.	3.3	37
774	Beating the Miscibility Barrier between Iron Group Elements and Magnesium by High-Pressure Alloying.	7.8	65

#	Article	lF	CITATIONS
775	Pressure-induced structural phase transition inNaBH4. Physical Review B, 2005, 72, .	3.2	38
776	Electronic, elastic, and optical properties of Y2O2S. Journal of Applied Physics, 2005, 97, 103711.	2.5	14
777	Vacancy-mediated hydrogen desorption inNaAlH4. Physical Review B, 2005, 72, .	3.2	81
778	Surface energy and stress release by layer relaxation. Physical Review B, 2005, 72, .	3.2	44
779	Role of titanium in hydrogen desorption in crystalline sodium alanate. Applied Physics Letters, 2005, 86, 251913.	3.3	69
780	High-Pressure Melting of MgSiO3. Physical Review Letters, 2005, 94, 195701.	7.8	54
781	Mean-field potential calculations of shock-compressed porous carbon. Physical Review B, 2005, 71, .	3.2	9
782	Electronic and optical properties of pressure induced phases of MgH2. Journal of Alloys and Compounds, 2005, 404-406, 220-223.	5 . 5	16
783	Carbon in iron phases under high pressure. Geophysical Research Letters, 2005, 32, .	4.0	36
784	Magnetoresistance and Hall-effect measurements of Ni thin films. Journal of Applied Physics, 2005, 97, 083902.	2.5	3
785	Electronic structure investigation of Ti3AlC2, Ti3SiC2, and Ti3GeC2 by soft x-ray emission spectroscopy. Physical Review B, 2005, 72, .	3.2	59
786	Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides. Physical Review B, 2005, 71, .	3.2	173
787	Ab initiocalculation of elastic properties of solid He under pressure. Physical Review B, 2005, 72, .	3.2	23
788	Elastic properties of Mg($1\hat{A}x$)AlxB2from first principles theory. Journal of Physics Condensed Matter, 2004, 16, 5241-5250.	1.8	1
789	Electron-phonon coupling ofî±â^'Gaboron. Physical Review B, 2004, 70, .	3.2	54
790	CubicTiO2as a potential light absorber in solar-energy conversion. Physical Review B, 2004, 70, .	3.2	66
791	Electronic structure studies of V6O13 by soft x-ray emission spectroscopy: Band-like and excitonic vanadium states. Physical Review B, 2004, 69, .	3.2	36
792	First-principles prediction of superplastic transition-metal alloys. Physical Review B, 2004, 70, .	3.2	29

#	Article	IF	CITATIONS
793	Resonant Inelastic Soft X-Ray Scattering at Hollow Lithium States in Solid LiCl. Physical Review Letters, 2004, 93, .	7.8	5
794	First-Principles Theory of Intermediate-Valencef-electron Systems. Physical Review Letters, 2004, 93, 096403.	7.8	17
795	Layered compound Nb3SiC2 predicted from first-principles theory. Applied Physics Letters, 2004, 85, 3071-3073.	3.3	34
796	New Probe of the Electronic Structure of Amorphous Materials. Physical Review Letters, 2004, 93, 206403.	7.8	30
797	Electron-phonon coupling in high-pressure Nb. Physical Review B, 2004, 69, .	3.2	34
798	Bonding and classification of nanolayered ternary carbides. Physical Review B, 2004, 70, .	3.2	212
799	Pressure effects on the structure and vibrations of l²- and l³â°'C3N4. Physical Review B, 2004, 70, .	3.2	15
800	Electrical resistivity of acceptor carbon in GaAs. Journal of Applied Physics, 2004, 95, 2532-2535.	2.5	13
801	Electronic Structure and Hydrogen Desorption in NaAlH ₄ . Materials Research Society Symposia Proceedings, 2004, 837, 31.	0.1	1
802	Linear and Nonlinear Semiclassical Optics Beyond the Electric Dipole Approximation. Physica Scripta, 2004, T109, 106.	2.5	1
803	Wolframite: the post-fergusonite phase in YLiF4. Journal of Physics Condensed Matter, 2004, 16, S983-S988.	1.8	16
804	Electronic and optical properties of Â-Al2O3fromab initiotheory. Journal of Physics Condensed Matter, 2004, 16, 2891-2900.	1.8	47
805	Ab initio phonon calculations for L12 Ni3Al and B2 NiAl. Solid State Communications, 2004, 129, 809-814.	1.9	24
806	Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta). Solid State Communications, 2004, 129, 589-592.	1.9	397
807	Theory of the magnetic anisotropy of Gd metal. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E201-E202.	2.3	4
808	Inertial phase separation in rotating self-gravitating media. Fluid Dynamics, 2004, 39, 920-932.	0.9	3
809	Pressure-induced phase transition in ErH3. Physica Status Solidi (B): Basic Research, 2004, 241, 3219-3223.	1.5	12
810	Mean-field potential approach to the quasiharmonic theory of solids. International Journal of Quantum Chemistry, 2004, 96, 501-506.	2.0	42

#	Article	IF	CITATIONS
811	Model for phase coexistence in phase transitions. International Journal of Quantum Chemistry, 2004, 97, 961-965.	2.0	O
812	Structural Phase Transitions in Heavy Alkali Metals Under Pressure. ChemPhysChem, 2004, 5, 1411-1415.	2.1	4
813	Ab initio calculations and experimental determination of the structure of Cr2AlC. Solid State Communications, 2004, 130, 445-449.	1.9	179
814	High-pressure crystal structure studies of Fe, Ru and Os. Journal of Physics and Chemistry of Solids, 2004, 65, 1565-1571.	4.0	9
815	Mn+1AXnphases in theTiâ^'Siâ^'Csystem studied by thin-film synthesis andab initiocalculations. Physical Review B, 2004, 70, .	3.2	212
816	Optical Properties of Oxide Compounds PbO, SnO2 and TiO2. Physica Scripta, 2004, T109, 180.	2.5	27
817	Electronic, thermal, and elastic properties of Ti3Si1â^'x Gex C2 solid solutions. Physical Review B, 2004, 70,	3.2	88
818	Influence of hydrogen on the stability of iron phases under pressure. Geophysical Research Letters, 2004, 31, .	4.0	14
819	Titanium metal at high pressure: Synchrotron experiments andab initiocalculations. Physical Review B, 2004, 69, .	3.2	50
820	Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation. Physical Review B, 2004, 70, .	3.2	180
821	<title>Electronic structure and optical spectra of novel rechargeable lithium batteries</title> ., 2004, , .		1
822	High-pressure and high-temperature synthesis of the cubicTiO2polymorph. Physical Review B, 2004, 70, .	3.2	108
823	Structural flyby characterization of nanoporosity. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, S277-S281.	0.8	2
824	Spin-dependent conductance in nonmagnetic InGaAs asymmetric double barrier devices. Brazilian Journal of Physics, 2004, 34, 632-634.	1.4	1
825	Electronic structure and magnetic properties of lithium manganese spinels. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 287-289.	2.3	5
826	Calculated high pressure crystal structure transformations for phosphorus. Physica Status Solidi (B): Basic Research, 2003, 235, 282-287.	1.5	35
827	High pressure structural phase transitions in IV–VI semiconductors. Physica Status Solidi (B): Basic Research, 2003, 235, 341-347.	1.5	44
828	LiH under high pressure and high temperature: A first-principles study. Physica Status Solidi (B): Basic Research, 2003, 235, 470-473.	1.5	17

#	Article	IF	CITATIONS
829	High-pressure phase transitions in semimagnetic semiconductor I: Pb1–xMnxS. Physica Status Solidi (B): Basic Research, 2003, 237, 448-453.	1.5	6
830	Stability of the body-centred-cubic phase of iron in the Earth's inner core. Nature, 2003, 424, 1032-1034.	27.8	201
831	Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nature Materials, 2003, 2, 673-677.	27.5	1,687
832	CubicHf3N4andZr3N4:A class of hard materials. Physical Review B, 2003, 68, .	3.2	294
833	Metal-Nonmetal Transition in the Boron Group Elements. Physical Review Letters, 2003, 90, 065701.	7.8	111
834	The structure of the metallic high-pressure Fe3O4polymorph: experimental and theoretical study. Journal of Physics Condensed Matter, 2003, 15, 7697-7706.	1.8	65
835	CRYSTALLOGRAPHIC STRUCTURES OF PbWO4. High Pressure Research, 2003, 23, 343-347.	1.2	13
836	Structure and bulk modulus of M2AlC (M=Ti, V, and Cr). Applied Physics Letters, 2003, 83, 899-901.	3.3	189
837	Balanced crystal orbital overlap population—a tool for analysing chemical bonds in solids. Journal of Physics Condensed Matter, 2003, 15, 7751-7761.	1.8	62
838	Origin of Magnetic Anisotropy of Gd Metal. Physical Review Letters, 2003, 91, 157201.	7.8	73
839	Optical properties of SiGe alloys. Journal of Applied Physics, 2003, 93, 3832-3836.	2.5	27
840	Magnetic susceptibility of hcp iron and the seismic anisotropy of Earth's inner core. Physical Review B, 2003, 68, .	3.2	27
841	Pressure-induced structural transformations in the Mott insulatorFel2. Physical Review B, 2003, 68, .	3.2	19
842	Theoretical investigation of the solubility in(MxM2â^'x′)AlC(MandM′=Ti,V,Cr). Physical Review B, 2003, 68, .	3.2	87
843	Calculation of surface stress for fcc transition metals. Physical Review B, 2003, 68, .	3.2	39
844	Belonoshko, Ahuja, and Johansson Reply:. Physical Review Letters, 2002, 89, .	7.8	5
845	Theory of the ternary layered system Ti–Al–N. Journal of Applied Physics, 2002, 91, 9874.	2.5	72
846	H-H interaction and structural phase transition inTi3SnHx. Physical Review B, 2002, 66, .	3.2	5

#	Article	IF	CITATIONS
847	Stabilization of potential superhardRuO2phases: A theoretical study. Physical Review B, 2002, 66, .	3.2	17
848	Cotunnite-Structured Titanium Dioxide and the Hardest known Oxide. High Pressure Research, 2002, 22, 429-433.	1.2	8
849	Effect of band filling on the pressure-induced structural transition in Mo-Re alloys. Physical Review B, 2002, 66, .	3.2	8
850	Optical and reduced band gap inn- andp-type GaN and AlN. Journal of Applied Physics, 2002, 92, 3207-3216.	2.5	18
851	Optical properties of 4H–SiC. Journal of Applied Physics, 2002, 91, 2099-2103.	2.5	20
852	Optical Absorption of Large Band-Gap SbxBi1-xl3 Alloys. Materials Research Society Symposia Proceedings, 2002, 744, 1.	0.1	1
853	Going to 10 TPa: The Calculated Hugoniots for Cu, Ta, and Mo. High Pressure Research, 2002, 22, 485-489.	1.2	2
854	High-pressure structural phase transitions in TiO2and synthesis of the hardest known oxide. Journal of Physics Condensed Matter, 2002, 14, 10995-10999.	1.8	26
855	High Pressure Theoretical Studies of Actinide Dioxides. High Pressure Research, 2002, 22, 471-474.	1.2	29
856	Pressure-induced phase transitions of KNbO3. Journal of Physics Condensed Matter, 2002, 14, 10873-10877.	1.8	7
857	Precise solution for H-point oscillation: Mo, Na, and Fe. Journal of Physics Condensed Matter, 2002, 14, L453-L459.	1.8	4
858	Thermodynamic properties at the Earth\$rquot\$s core conditions and the shock-reduced isotherm of iron: a first-principles study. Journal of Physics Condensed Matter, 2002, 14, 7321-7335.	1.8	7
859	Thermodynamic properties of MgO, Be, and W: a simplified computational approach. Journal of Physics Condensed Matter, 2002, 14, 10895-10900.	1.8	5
860	Accurate quantum mechanical treatment of phonon instability: body-centred cubic zirconium. Journal of Physics Condensed Matter, 2002, 14, L695-L701.	1.8	11
861	Electronic Properties of n-type AlXGa1-XAs Alloys. Materials Research Society Symposia Proceedings, 2002, 744, 1.	0.1	0
862	Electronic and optical properties of lead iodide. Journal of Applied Physics, 2002, 92, 7219-7224.	2.5	96
863	Molecular dynamics study of phase transitions in Xe. Journal of Chemical Physics, 2002, 117, 7233-7244.	3.0	33
864	High-pressure structural studies of hematiteFe2O3. Physical Review B, 2002, 65, .	3.2	116

#	Article	IF	Citations
865	Lattice Dynamics of Solid Xenon under Pressure. Physical Review Letters, 2002, 88, 075504.	7.8	37
866	Electronic structure, magnetic, and cohesive properties of Lix Mn2O4: Theory. Physical Review B, 2002, 65, .	3.2	52
867	Reduction of shock-wave data with mean-field potential approach. Journal of Applied Physics, 2002, 92, 6616-6620.	2.5	53
868	Optical properties of donor-triad cluster in GaAs and GaN. Applied Physics Letters, 2002, 81, 3158-3160.	3.3	1
869	Cotunnite-Structured Titanium Dioxide. High Pressure Research, 2002, 22, 391-394.	1.2	8
870	Polarization-dependent soft-x-ray absorption of highly oriented ZnO microrod arrays. Journal of Physics Condensed Matter, 2002, 14, 6969-6974.	1.8	74
871	Bonding and elastic properties of superconducting MgB2. Solid State Communications, 2002, 123, 257-262.	1.9	26
872	Electrical resistivity, MNM transition and band-gap narrowing of cubic GaN:Si. Microelectronics Journal, 2002, 33, 365-369.	2.0	6
873	Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor. Nature, 2002, 418, 620-623.	27.8	346
874	First-principle calculations of the dielectric function of zinc-blende and wurtzite InN. Journal of Physics Condensed Matter, 2001, 13, 8945-8950.	1.8	40
875	Theoretical and experimental investigations on elastic properties of substoichiometric titanium nitrides: influence of lattice vacancies. Solid State Sciences, 2001, 3, 1319-1321.	0.7	22
876	Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles. Physical Review B, 2001, 64, .	3.2	337
877	Molecular Dynamics Study of Melting and fcc-bcc Transitions in Xe. Physical Review Letters, 2001, 87, 165505.	7.8	49
878	Experimental and Theoretical Identification of a New High-PressureTiO2Polymorph. Physical Review Letters, 2001, 87, 275501.	7.8	175
879	Electronic and optical properties of BaTiO3 and SrTiO3. Journal of Applied Physics, 2001, 90, 1854-1859.	2.5	39
880	Molecular dynamics simulation of the structure of yttriaY2O3phases using pairwise interactions. Physical Review B, 2001, 64, .	3.2	29
881	A natural shock-induced dense polymorph of rutile with \hat{l} ±-PbO2 structure in the suevite from the Ries crater in Germany. Earth and Planetary Science Letters, 2001, 192, 485-495.	4.4	87
882	Theoretical prediction of the Cmca phase in Ge under high pressure. Journal of Applied Physics, 2001, 89, 2547-2549.	2.5	4

#	Article	IF	Citations
883	Full band calculation of doping-induced band-gap narrowing inp-type GaAs. Physical Review B, 2001, 64,	3.2	25
884	High-pressure structural phase transitions in RuO2 and its geophysical implications. Journal of Physics and Chemistry of Solids, 2001, 62, 2035-2037.	4.0	5
885	Effective electronic masses in wurtzite and zinc-blende GaN and AlN. Journal of Crystal Growth, 2001, 231, 397-406.	1.5	56
886	First-principle calculations of optical properties of wurtzite AlN and GaN. Journal of Crystal Growth, 2001, 231, 407-414.	1.5	56
887	Electrical resistivity and band-gap shift of Si-doped GaN and metal-nonmetal transition in cubic GaN, InN and AlN systems. Journal of Crystal Growth, 2001, 231, 420-427.	1.5	12
888	Experimental and theoretical investigations on the compressibility of nanocrystalline nickel. Journal of Materials Science, 2001, 36, 4719-4721.	3.7	38
889	The hardest known oxide. Nature, 2001, 410, 653-654.	27.8	316
890	Effective electron and hole masses in intrinsic and heavily n-type doped GaN and AlN. Journal of Physics Condensed Matter, 2001, 13, 8915-8922.	1.8	20
891	Influence of Si doping on optical properties of wurtzite GaN. Journal of Physics Condensed Matter, 2001, 13, 8891-8899.	1.8	9
892	Ab initio calculations of the mechanical properties of Ti3SiC2. Applied Physics Letters, 2001, 79, 1450-1452.	3.3	73
893	Reflectance anisotropy spectra of Cu and Ag (110) surfaces from a binitiotheory. Physical Review B, 2001, 64, .	3.2	25
894	Theoretical prediction of a phase transition in gold. Physical Review B, 2001, 63, .	3.2	40
895	Theoretical study of the high-pressure orthorhombic Tll-type phase in NaBr and NaI. Physical Review B, 2001, 63, .	3.2	1
896	Melting of iron and other metals at earth's core conditions: A simplified computational approach. Physical Review B, 2001, 65, .	3.2	71
897	High pressure studies of sodium and silver halides. High Pressure Research, 2000, 18, 131-138.	1.2	0
898	A Unified Bonding Picture for the Metallic Triel Elements. Angewandte Chemie - International Edition, 2000, 39, 1246-1249.	13.8	13
899	Quasiab initiomolecular dynamic study of Cu melting. Physical Review B, 2000, 61, 3838-3844.	3.2	108
900	The relationship between interlayer spacing and magnetic ordering in gadolinium. Journal of Physics Condensed Matter, 2000, 12, 10441-10456.	1.8	5

#	Article	IF	Citations
901	Delocalization and new phase in americium:â€fDensity-functional electronic structure calculations. Physical Review B, 2000, 61, 8119-8124.	3.2	44
902	Theoretical high-pressure studies of Cs metal. Physical Review B, 2000, 63, .	3.2	13
903	Electronic structure of Ti3SiC2. Applied Physics Letters, 2000, 76, 2226-2228.	3.3	65
904	Theoretical Investigation of High Pressure Phases of Carbon Dioxide. Physical Review Letters, 2000, 85, 1258-1261.	7.8	77
905	Gallium and Indium under High Pressure. Physical Review Letters, 2000, 85, 142-145.	7.8	47
906	Absence of a pressure-induced structural phase transition in Ti3Alup to 25 GPa. Physical Review B, 2000, 63, .	3.2	13
907	Structural properties of liquidAl2O3:A molecular dynamics study. Physical Review E, 2000, 61, 2723-2729.	2.1	102
908	Comment on "Mystery of the Alkali Metals: Giant Moments of Fe and Co on and in Cs Films― Physical Review Letters, 2000, 85, 1583-1583.	7.8	6
909	Mechanism for thela^3Al2O3to thela^3Al2O3transition and the stability ofla^3Al2O3under volume expansion. Physical Review B, 2000, 61, 3131-3134.	3.2	12
910	Molecular dynamics of LiF melting. Physical Review B, 2000, 61, 11928-11935.	3.2	54
911	Experimental and theoretical investigations on eskolaite (Cr2O3) at high pressures. Journal of Alloys and Compounds, 2000, 302, 16-20.	5.5	26
912	X-ray diffraction studies of AuCu3-type neptunium compounds under pressure. Journal of Alloys and Compounds, 2000, 296, 27-32.	5.5	19
913	Quasi–Ab InitioMolecular Dynamic Study of Fe Melting. Physical Review Letters, 2000, 84, 3638-3641.	7.8	248
914	Probing the local electronic structure in the H induced metal - insulator transition of Y. Journal of Physics Condensed Matter, 1999, 11, L119-L125.	1.8	16
915	Ab initio calculation of elastic constants of SiO2 stishovite and $\hat{l}\pm$ -quartz. Journal of Chemical Physics, 1999, 111, 2071-2074.	3.0	45
916	Theoretical high-pressure studies of silicon VI. Physical Review B, 1999, 60, 14475-14477.	3.2	23
917	Theoretical search for the CrB-type high-pressure phase in LiH, NaH, KH and RbH. Physica B: Condensed Matter, 1999, 265, 87-91.	2.7	29
918	The Origin of the Distorted Close-Packed Elemental Structure of Indium. Angewandte Chemie - International Edition, 1999, 38, 2017-2020.	13.8	21

#	Article	IF	CITATIONS
919	Elastic and optical properties ofl±- andlºa^'Al2O3. Physical Review B, 1999, 59, 12777-12787.	3.2	152
920	High-pressure study of titanium carbide. Journal of Alloys and Compounds, 1999, 289, 24-27.	5 . 5	57
921	Optical Properties of Cu-(110) Surface. Materials Research Society Symposia Proceedings, 1999, 579, 59.	0.1	0
922	Calculated optical properties of a solar energy material: CuGaS2. Solar Energy Materials and Solar Cells, 1998, 53, 357-366.	6.2	26
923	Electronic and optical properties of FeS ₂ and CoS ₂ . The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 78, 475-480.	0.6	4
924	Elastic and high pressure properties of ZnO. Journal of Applied Physics, 1998, 83, 8065-8067.	2.5	96
925	Theoretical Study of the stability of MgSiO3-perovskite in the deep mantle. Geophysical Research Letters, 1998, 25, 4253-4256.	4.0	18
926	Melting and liquid structure of aluminum oxide using a molecular-dynamics simulation. Physical Review E, 1998, 57, 1673-1676.	2.1	54
927	Theoretical investigation of the high-pressure phases of Ce. Physical Review B, 1998, 57, 2091-2101.	3.2	22
928	Comment on "Stability and the equation of state of α-manganese under ultrahigh pressure― Physical Review B, 1998, 57, 10989-10992.	3.2	16
929	Theoretical confirmation of the high-pressure orthorhombic phase in strontium. Physical Review B, 1998, 58, 8152-8154.	3.2	8
930	Electronic and optical properties of FeS2 and CoS2. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1998, 78, 475-480.	0.6	1
931	Anomaly inc/aRatio of Zn under Pressure. Physical Review Letters, 1997, 79, 2301-2303.	7.8	48
932	Experimental and theoretical identification of a new high-pressure phase of silica. Nature, 1997, 388, 362-365.	27.8	177
933	On the semiconducting state and structural properties of YH3 from first principles theory. Applied Physics Letters, 1997, 71, 3498-3500.	3.3	54
934	Optical properties of monoclinic SnI2from relativistic first-principles theory. Physical Review B, 1997, 56, 6851-6861.	3.2	82
935	Calculated electronic and optical properties of a graphite intercalation compound:. Journal of Physics Condensed Matter, 1997, 9, 9845-9852.	1.8	8
936	Optical properties of graphite from first-principles calculations. Physical Review B, 1997, 55, 4999-5005.	3.2	115

#	Article	IF	CITATIONS
937	Embedded-atom molecular dynamic study of iron melting. Physics of the Earth and Planetary Interiors, 1997, 102, 171-184.	1.9	40
938	Electronic and optical properties of InP. Solid State Communications, 1997, 104, 249-252.	1.9	10
939	A Theoretical Study of the Pressure-Induced Structural Phase Transition in CdTe. Physica Status Solidi (B): Basic Research, 1997, 199, 75-79.	1.5	16
940	Electronic and optical properties of redHgI2. Physical Review B, 1996, 54, 10419-10424.	3.2	41
941	Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO. Physical Review B, 1996, 53, 3072-3079.	3.2	259
942	Core Hole Effects in Resonant Inelastic X-Ray Scattering of Graphite. Physical Review Letters, 1996, 76, 1761-1761.	7.8	27
943	Optical properties of the group-IVBrefractory metal compounds. Physical Review B, 1996, 54, 1673-1681.	3.2	147
944	Theoretical and experimental study of the graphite 1sx-ray absorption edges. Physical Review B, 1996, 54, 14396-14404.	3.2	82
945	First-principles calculations of the magnetic properties of and its hydrides. Journal of Physics Condensed Matter, 1996, 8, 3373-3384.	1.8	15
946	Anisotropic dielectric response of ferromagnetic cobalt. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 89-90.	2.3	2
947	Electronic structure of graphite: Effect of hydrostatic pressure. Physical Review B, 1995, 51, 4813-4819.	3.2	57
948	Anomalous fcc Crystal Structure of Thorium Metal. Physical Review Letters, 1995, 75, 280-283.	7.8	35
949	Anomalous fcc Crystal Structure of Thorium Metal. Physical Review Letters, 1995, 75, 3968-3968.	7.8	6
950	Bulk and surface magnetism and interplanar spacings in Gd from first-principles calculations. Physical Review B, 1995, 52, 4420-4426.	3.2	48
951	Theoretical Confirmation of the High Pressure Simple Cubic Phase in Calcium. Physical Review Letters, 1995, 75, 3473-3476.	7.8	72
952	Effect of non-local corrections to the spin density functional theory for the Fermi surface of ferromagnetic nickel. Physica Scripta, 1994, 50, 573-575.	2.5	3
953	Influence of pseudocore valence-band hybridization on the crystal-structure phase stabilities of transition metals under extreme compressions. Physical Review B, 1994, 50, 14690-14693.	3.2	25
954	Electronic structure, magnetism, and Fermi surfaces of Gd and Tb. Physical Review B, 1994, 50, 5147-5154.	3.2	86

#	Article	IF	Citations
955	Fermi surface of noble metals: Full-potential generalized-gradient-approximation calculations. Physical Review B, 1994, 50, 11183-11186.	3.2	7
956	Theoretical predictions of structural phase transitions in Cr, Mo, and W. Physical Review B, 1994, 49, 9365-9371.	3.2	41
957	Electronic structure of platinum at ultrahigh pressure. High Pressure Research, 1994, 12, 161-170.	1.2	8
958	Optical properties of PdO and PtO. Physical Review B, 1994, 50, 2128-2132.	3.2	63
959	Crystal structure and elastic-constant anomalies in the magnetic 3dtransition metals. Physical Review B, 1994, 50, 5918-5927.	3.2	109
960	Influence of Hydrostatic Pressure on the Fermi Surface of Vb Transition Metals. Physica Status Solidi (B): Basic Research, 1994, 182, 377-382.	1.5	1
961	Crystallographic phase transitions in actinide metals as a function of pressure. Journal of Alloys and Compounds, 1994, 213-214, 268-277.	5 . 5	12
962	Fermi surface of alkali metals using the full-potential linear muffin-tin orbital method and the generalized gradient approximation. Physical Review B, 1994, 50, 18003-18006.	3.2	4
963	Crystal structures of Ti, Zr, and Hf under compression: Theory. Physical Review B, 1993, 48, 16269-16279.	3.2	151
964	Effect of strain on the Fermi surface of the noble metals. Physical Review B, 1993, 48, 1373-1377.	3.2	0
965	Effect of pressure on the Fermi surface of ferromagnetic nickel. Physical Review B, 1992, 46, 3785-3788.	3.2	1
966	Fermi surface of ferromagnetic nickel. Physica Scripta, 1992, 45, 621-625.	2.5	2
967	The fermi surface properties of vanadium. Physica B: Condensed Matter, 1992, 179, 257-263.	2.7	1
968	Fermi surface characteristics and enhancement factors for tantalum. Pramana - Journal of Physics, 1992, 38, 189-194.	1.8	2
969	Fermi Surface Properties of Platinum. Physica Status Solidi (B): Basic Research, 1991, 168, 509-518.	1.5	4
970	Effect of hydrostatic pressure on the Fermi surface of Pd and Pt. Physical Review B, 1991, 43, 2401-2403.	3.2	4
971	Fermi Surface Charactertics of Palladium. Physica Status Solidi (B): Basic Research, 1990, 160, 549-559.	1.5	4
972	Fermi Surface and Mass Enhancement Factor for Niobium. Physica Status Solidi (B): Basic Research, 1990, 162, 497-507.	1.5	6

#	Article	IF	CITATIONS
973	Effect of pressure on the Fermi surface of noble metals. Physical Review B, 1989, 39, 9806-9808.	3.2	8
974	Fermi surface of the noble metals. Pramana - Journal of Physics, 1989, 32, 831-840.	1.8	11
975	Semiconducting phase of hafnium dioxide under high pressure: a theoretical studied by quasi-particle GW calculations. Materials Research Express, 0, , .	1.6	3
976	Investigation of Nd ³⁺ incorporation in Ceâ€rhabdophane: Insight from structural flexibility and occupation mechanism. Journal of the American Ceramic Society, 0, , .	3.8	4