Miles Andrews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7770611/publications.pdf

Version: 2024-02-01

218677 175258 7,515 62 26 h-index citations g-index papers

68 68 68 12786 docs citations times ranked citing authors all docs

52

#	Article	IF	CITATIONS
1	Characterization of the treatment-naive immune microenvironment in melanoma with <i>BRAF</i> mutation., 2022, 10, e004095.		7
2	Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature, 2022, 606, 797-803.	27.8	54
3	Multi-modal molecular programs regulate melanoma cell state. Nature Communications, 2022, 13, .	12.8	9
4	Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nature Medicine, 2021, 27, 1432-1441.	30.7	216
5	Identification of MicroRNA–mRNA Networks in Melanoma and Their Association with PD-1 Checkpoint Blockade Outcomes. Cancers, 2021, 13, 5301.	3.7	7
6	Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in <i>Braf</i> -mutated melanoma. Oncolmmunology, 2021, 10, 1992880.	4.6	7
7	Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 2021, 374, 1632-1640.	12.6	369
8	Stroma remodeling and reduced cell division define durable response to PD-1 blockade in melanoma. Nature Communications, 2020, 11, 853.	12.8	23
9	Spatially resolved analyses link genomic and immune diversity and reveal unfavorable neutrophil activation in melanoma. Nature Communications, 2020, 11, 1839.	12.8	15
10	Abstract 5704: Pan-cancer genomic characterization of patient-matched primary, extracranial, and brain metastases. , 2020, , .		0
11	Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium. Lancet Oncology, The, 2019, 20, e378-e389.	10.7	155
12	A pilot study of intrahepatic yttriumâ€90 microsphere radioembolization in combination with intravenous cisplatin for uveal melanoma liverâ€only metastases. Cancer Reports, 2019, 2, e1183.	1.4	7
13	Combination anti–CTLA-4 plus anti–PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22699-22709.	7.1	226
14	Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Research, 2019, 29, 846-861.	12.0	160
15	Abstract 2838: The gut microbiome (GM) and immunotherapy response are influenced by host lifestyle factors. Cancer Research, 2019, 79, 2838-2838.	0.9	50
16	Abstract 2838: The gut microbiome (GM) and immunotherapy response are influenced by host lifestyle factors. , 2019, , .		6
17	Abstract 2357: Identification of microRNAs associated with melanoma immunity and immunotherapy outcome. , 2019, , .		O
18	Abstract 1493: Therapeutic efficacy and tolerability of combined immune checkpoint blockade in metastatic melanoma patients is influenced by the gut microbiome. Cancer Research, 2019, 79, 1493-1493.	0.9	3

#	Article	IF	Citations
19	Abstract 3776: Spatially resolved immunogenomic analyses reveal diverse sub tumoral microenvironments in the context of melanoma immunotherapy. , 2019, , .		0
20	Abstract 3776: Spatially resolved immunogenomic analyses reveal diverse sub tumoral microenvironments in the context of melanoma immunotherapy. , 2019, , .		2
21	Abstract 2357: Identification of microRNAs associated with melanoma immunity and immunotherapy outcome. , 2019, , .		0
22	The RNA-binding Protein MEX3B Mediates Resistance to Cancer Immunotherapy by Downregulating HLA-A Expression. Clinical Cancer Research, 2018, 24, 3366-3376.	7.0	73
23	The good, the (not so) bad and the ugly of immune homeostasis in melanoma. Immunology and Cell Biology, 2018, 96, 497-506.	2.3	7
24	Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. Lancet Oncology, The, 2018, 19, 181-193.	10.7	233
25	Predictors of Response to Immune Checkpoint Blockade. , 2018, , 525-544.		0
26	Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 2018, 359, 97-103.	12.6	3,126
27	A pilot study of intrahepatic Yttrium-90 microsphere radioembolisation in combination with intravenous cisplatin for uveal melanoma liver-only metastases. Annals of Oncology, 2018, 29, ix105.	1.2	0
28	Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nature Medicine, 2018, 24, 1649-1654.	30.7	592
29	Autoantibodies May Predict Immune-Related Toxicity: Results from a Phase I Study of Intralesional Bacillus Calmette–Guérin followed by Ipilimumab in Patients with Advanced Metastatic Melanoma. Frontiers in Immunology, 2018, 9, 411.	4.8	49
30	Concepts Collide: Genomic, Immune, and Microbial Influences on the Tumor Microenvironment and Response to Cancer Therapy. Frontiers in Immunology, 2018, 9, 946.	4.8	19
31	Late presentation of generalised bullous pemphigoidâ€ike reaction in a patient treated with pembrolizumab for metastatic melanoma. Australasian Journal of Dermatology, 2017, 58, e109-e112.	0.7	30
32	Efficacy of anti-PD-1 therapy in patients with melanoma brain metastases. British Journal of Cancer, 2017, 116, 1558-1563.	6.4	91
33	Hallmarks of response to immune checkpoint blockade. British Journal of Cancer, 2017, 117, 1-7.	6.4	194
34	Immunotherapy resistance: the answers lie ahead $\hat{a}\in$ " not in front $\hat{a}\in$ " of us. , 2017, 5, 10.		13
35	Reply to â€ [*] Comment on â€ [*] Efficacy and toxicity of treatment with the anti-CTLA-4 antibody ipilimumab in patients with metastatic melanoma after prior anti-PD-1 therapy''. British Journal of Cancer, 2017, 116, e15-e15.	6.4	1
36	Cancer Evolution during Immunotherapy. Cell, 2017, 171, 740-742.	28.9	28

#	Article	IF	Citations
37	Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure. EMBO Molecular Medicine, 2017, 9, 1011-1029.	6.9	63
38	Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Checkpoint Blockade. Cell, 2017, 170, 1120-1133.e17.	28.9	960
39	PLX8394, a new generation BRAF inhibitor, selectively inhibits BRAF in colonic adenocarcinoma cells and prevents paradoxical MAPK pathway activation. Molecular Cancer, 2017, 16, 112.	19.2	44
40	Abstract CT156: Novel neoadjuvant targeted therapy trial yields insight into molecular mechanisms of response. Cancer Research, 2017, 77, CT156-CT156.	0.9	1
41	Non-HIV-associated Kaposi sarcoma in an immunosuppressed melanoma patient treated with dabrafenib. Journal of Clinical Pharmacy and Therapeutics, 2016, 41, 354-356.	1.5	3
42	Efficacy and toxicity of treatment with the anti-CTLA-4 antibody ipilimumab in patients with metastatic melanoma after prior anti-PD-1 therapy. British Journal of Cancer, 2016, 114, 1084-1089.	6.4	113
43	Systems analysis identifies miR-29b regulation of invasiveness in melanoma. Molecular Cancer, 2016, 15, 72.	19.2	21
44	Efficacy of anti-PD-1 therapy in patients with melanoma brain metastases. Annals of Oncology, 2016, 27, vi382.	1.2	2
45	Patterns of care for metastatic renal cell carcinoma in Australia. BJU International, 2015, 116, 36-41.	2.5	12
46	Updated efficacy and toxicity of treatment with the anti-CTLA-4 antibody ipilimumab in metastatic melanoma patients previously treated with anti-PD-1 therapy., 2015, 3, P126.		2
47	Cellular Mechanisms Underlying Complete Hematological Response of Chronic Myeloid Leukemia to BRAF and MEK1/2 Inhibition in a Patient with Concomitant Metastatic Melanoma. Clinical Cancer Research, 2015, 21, 5222-5234.	7.0	4
48	Response to MAPK pathway inhibitors in BRAF V600M-mutated metastatic melanoma. Journal of Clinical Pharmacy and Therapeutics, 2015, 40, 121-123.	1.5	17
49	The kinase inhibitors dabrafenib and trametinib affect isolated immune cell populations. Oncolmmunology, 2014, 3, e946367.	4.6	13
50	Effects of Epithelial to Mesenchymal Transition on T Cell Targeting of Melanoma Cells. Frontiers in Oncology, 2014, 4, 367.	2.8	29
51	Immune consequences of kinase inhibitors in development, undergoing clinical trials and in current use in melanoma treatment. Expert Review of Clinical Immunology, 2014, 10, 1107-1123.	3.0	2
52	Evolving role of tumor antigens for future melanoma therapies. Future Oncology, 2014, 10, 1457-1468.	2.4	15
53	A single-centre experience of patients with metastatic melanoma enrolled in a dabrafenib named patient programme. Melanoma Research, 2014, 24, 144-149.	1.2	6
54	MEK Inhibition, Alone or in Combination with BRAF Inhibition, Affects Multiple Functions of Isolated Normal Human Lymphocytes and Dendritic Cells. Cancer Immunology Research, 2014, 2, 351-360.	3.4	122

#	Article	IF	CITATIONS
55	BRAF Inhibitor–Driven Tumor Proliferation in a <i>KRAS</i> Mutated Colon Carcinoma Is Not Overcome by MEK1/2 Inhibition. Journal of Clinical Oncology, 2013, 31, e448-e451.	1.6	51
56	MEK inhibition, alone or in combination with BRAF inhibition, impairs multiple functions of isolated normal human lymphocytes and dendritic cells. , 2013, 1 , .		4
57	Human perforin mutations and susceptibility to multiple primary cancers. Oncolmmunology, 2013, 2, e24185.	4.6	57
58	Antioxidant Vitamins and Adrenocorticotrophic Hormone-Induced Hypertension in Rats. Clinical and Experimental Hypertension, 2007, 29, 465-478.	1.3	7
59	Apocynin but Not Allopurinol Prevents and Reverses Adrenocorticotropic Hormone-Induced Hypertension in the Rat. American Journal of Hypertension, 2005, 18, 910-916.	2.0	81
60	Nitric Oxide Donation Lowers Blood Pressure in Adrenocorticotrophic Hormoneâ€Induced Hypertensive Rats. Clinical and Experimental Hypertension, 2004, 26, 499-509.	1.3	10
61	Adrenocorticotropic hormone, blood pressure, and serum erythropoietin concentrations in the rat. American Journal of Hypertension, 2004, 17, 457-461.	2.0	9
62	The nitric oxide system in glucocorticoid-induced hypertension. Journal of Hypertension, 2002, 20, 1035-1043.	0.5	77