List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7769557/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cold responses in rice: From physiology to molecular biology. Journal of Plant Physiology, 2022, 269, 153602.                                                                                                                | 3.5  | 5         |
| 2  | Integration of light and temperature signaling pathways in plants. Journal of Integrative Plant<br>Biology, 2022, 64, 393-411.                                                                                               | 8.5  | 25        |
| 3  | Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences, 2022, 65, 33-92.                                                                                                                    | 4.9  | 107       |
| 4  | BAK1 plays contrasting roles in regulating abscisic acidâ€induced stomatal closure and abscisic<br>acidâ€inhibited primary root growth in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64,<br>1264-1280. | 8.5  | 18        |
| 5  | Drought meets SWEET. Nature Plants, 2022, 8, 25-26.                                                                                                                                                                          | 9.3  | 6         |
| 6  | Phosphorylation of the plasma membrane H+-ATPase AHA2 by BAK1 is required for ABA-induced stomatal closure in Arabidopsis. Plant Cell, 2022, 34, 2708-2729.                                                                  | 6.6  | 40        |
| 7  | Surviving and thriving: How plants perceive and respond to temperature stress. Developmental Cell, 2022, 57, 947-958.                                                                                                        | 7.0  | 104       |
| 8  | The transcription factor <i>bZIP68</i> negatively regulates cold tolerance in maize. Plant Cell, 2022, 34, 2833-2851.                                                                                                        | 6.6  | 42        |
| 9  | RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis. Molecular Plant, 2022, 15, 1192-1210.                                                    | 8.3  | 22        |
| 10 | CPK28-NLP7 module integrates cold-induced Ca <sup>2+</sup> signal and transcriptional reprogramming in <i>Arabidopsis</i> . Science Advances, 2022, 8, .                                                                     | 10.3 | 35        |
| 11 | Arabidopsis Uâ€box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptorâ€like protein kinases LRR1 and KIN7. Journal of Integrative Plant Biology, 2021, 63, 494-509.                  | 8.5  | 52        |
| 12 | Protein kinases in plant responses to drought, salt, and cold stress. Journal of Integrative Plant<br>Biology, 2021, 63, 53-78.                                                                                              | 8.5  | 273       |
| 13 | Reciprocal regulation between the negative regulator PP2CG1 phosphatase and the positive regulator OST1 kinase confers cold response in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 1568-1587.      | 8.5  | 19        |
| 14 | Groupâ€C/S1 bZIP heterodimers regulate <i>MdIPT5b</i> to negatively modulate drought tolerance in apple species. Plant Journal, 2021, 107, 399-417.                                                                          | 5.7  | 24        |
| 15 | Stepwise selection of natural variations at <i>CTB2</i> and <i>CTB4a</i> improves cold adaptation during domestication of <i>japonica</i> rice. New Phytologist, 2021, 231, 1056-1072.                                       | 7.3  | 30        |
| 16 | The direct targets of CBFs: In cold stress response and beyond. Journal of Integrative Plant Biology, 2021, 63, 1874-1887.                                                                                                   | 8.5  | 68        |
| 17 | The CRY2–COP1–HY5–BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis.<br>Plant Cell, 2021, 33, 3555-3573.                                                                                          | 6.6  | 49        |
| 18 | Natural variation in a type-A response regulator confers maize chilling tolerance. Nature Communications, 2021, 12, 4713.                                                                                                    | 12.8 | 63        |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | <i>Verticillium dahliae</i> effector VDAL protects MYB6 from degradation by interacting with PUB25<br>and PUB26 E3 ligases to enhance Verticillium wilt resistance. Plant Cell, 2021, 33, 3675-3699.                                          | 6.6 | 39        |
| 20 | The calcium transporter ANNEXIN1 mediates coldâ€induced calcium signaling and freezing tolerance in plants. EMBO Journal, 2021, 40, e104559.                                                                                                  | 7.8 | 99        |
| 21 | MYB30 Is a Key Negative Regulator of Arabidopsis Photomorphogenic Development That Promotes PIF4 and PIF5 Protein Accumulation in the Light. Plant Cell, 2020, 32, 2196-2215.                                                                 | 6.6 | 67        |
| 22 | The cold response regulator CBF1 promotes <i>Arabidopsis</i> hypocotyl growth at ambient<br>temperatures. EMBO Journal, 2020, 39, e103630.                                                                                                    | 7.8 | 49        |
| 23 | Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63, 635-674.                                                                                                                                    | 4.9 | 689       |
| 24 | Molecular Regulation of Plant Responses to Environmental Temperatures. Molecular Plant, 2020, 13,<br>544-564.                                                                                                                                 | 8.3 | 346       |
| 25 | The transcription factor ICE1 functions in cold stress response by binding to the promoters of <i>CBF</i> and <i>COR</i> genes. Journal of Integrative Plant Biology, 2020, 62, 258-263.                                                      | 8.5 | 82        |
| 26 | The Arabidopsis Nodulin Homeobox Factor AtNDX Interacts with AtRING1A/B and Negatively Regulates Abscisic Acid Signaling. Plant Cell, 2020, 32, 703-721.                                                                                      | 6.6 | 29        |
| 27 | Cold-Induced CBF–PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the phyB Thermosensor<br>in Arabidopsis. Molecular Plant, 2020, 13, 894-906.                                                                                     | 8.3 | 128       |
| 28 | Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. Plant, Cell<br>and Environment, 2019, 42, 424-436.                                                                                                    | 5.7 | 32        |
| 29 | <scp>ABRE</scp> â€ <scp>BINDING FACTORS</scp> play a role in the feedback regulation of<br><scp>ABA</scp> signaling by mediating rapid <scp>ABA</scp> induction of <scp>ABA</scp> coâ€receptor<br>genes. New Phytologist, 2019, 221, 341-355. | 7.3 | 151       |
| 30 | BRASSINOSTEROID-INSENSITIVE2 Negatively Regulates the Stability of Transcription Factor ICE1 in Response to Cold Stress in Arabidopsis. Plant Cell, 2019, 31, tpc.00058.2019.                                                                 | 6.6 | 110       |
| 31 | PUB25 and PUB26 Promote Plant Freezing Tolerance by Degrading the Cold Signaling Negative Regulator MYB15. Developmental Cell, 2019, 51, 222-235.e5.                                                                                          | 7.0 | 105       |
| 32 | Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New<br>Phytologist, 2019, 222, 1690-1704.                                                                                                               | 7.3 | 512       |
| 33 | Redox-Mediated Endocytosis of a Receptor-Like Kinase during Distal Stem Cell Differentiation Depends<br>on Its Tumor Necrosis Factor Receptor Domain. Plant Physiology, 2019, 181, 1075-1095.                                                 | 4.8 | 11        |
| 34 | <scp>EGR</scp> 2 phosphatase regulates <scp>OST</scp> 1 kinase activity and freezing tolerance in <i>Arabidopsis</i> . EMBO Journal, 2019, 38, .                                                                                              | 7.8 | 100       |
| 35 | <scp>OST</scp> 1â€mediated <scp>BTF</scp> 3L phosphorylation positively regulates <scp>CBF</scp> s<br>during plant cold responses. EMBO Journal, 2018, 37, .                                                                                  | 7.8 | 134       |
| 36 | Insights into the regulation of Câ€repeat binding factors in plant cold signaling. Journal of Integrative<br>Plant Biology, 2018, 60, 780-795.                                                                                                | 8.5 | 140       |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | EAR1 Negatively Regulates ABA Signaling by Enhancing 2C Protein Phosphatase Activity. Plant Cell, 2018, 30, 815-834.                                                                                                         | 6.6  | 111       |
| 38 | Molecular Regulation of CBF Signaling in Cold Acclimation. Trends in Plant Science, 2018, 23, 623-637.                                                                                                                       | 8.8  | 508       |
| 39 | INDUCER OF CBF EXPRESSION 1 is a male fertility regulator impacting anther dehydration in Arabidopsis. PLoS Genetics, 2018, 14, e1007695.                                                                                    | 3.5  | 46        |
| 40 | The Antagonistic Action of Abscisic Acid and Cytokinin Signaling Mediates Drought Stress Response in Arabidopsis. Molecular Plant, 2018, 11, 970-982.                                                                        | 8.3  | 217       |
| 41 | BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in<br>Arabidopsis. Molecular Plant, 2017, 10, 545-559.                                                                           | 8.3  | 262       |
| 42 | Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response. Molecular Cell, 2017, 66, 117-128.e5.                                        | 9.7  | 281       |
| 43 | Natural variation in CTB4a enhances rice adaptation to cold habitats. Nature Communications, 2017, 8, 14788.                                                                                                                 | 12.8 | 192       |
| 44 | MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis. Developmental Cell, 2017, 43, 630-642.e4.                                                            | 7.0  | 322       |
| 45 | PIF3 is a negative regulator of the <i>CBF</i> pathway and freezing tolerance in <i>Arabidopsis</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114,<br>E6695-E6702.         | 7.1  | 215       |
| 46 | E3 ligase SAUL1 serves as a positive regulator of PAMPâ€ŧriggered immunity and its homeostasis is monitored by immune receptor SOC3. New Phytologist, 2017, 215, 1516-1532.                                                  | 7.3  | 69        |
| 47 | ABI4 represses the expression of typeâ€A <i>ARRs</i> to inhibit seed germination in Arabidopsis. Plant<br>Journal, 2017, 89, 354-365.                                                                                        | 5.7  | 100       |
| 48 | Temperature-dependent autoimmunity mediated by chs1 requires its neighboring TNL gene SOC3. New Phytologist, 2017, 213, 1330-1345.                                                                                           | 7.3  | 55        |
| 49 | The <i>cbfs</i> triple mutants reveal the essential functions of <i><scp>CBF</scp>s</i> in cold acclimation and allow the definition of <scp>CBF</scp> regulons in <i>Arabidopsis</i> . New Phytologist, 2016, 212, 345-353. | 7.3  | 360       |
| 50 | ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal<br>Degradation. Molecular Plant, 2016, 9, 1570-1582.                                                                               | 8.3  | 87        |
| 51 | The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis. PLoS Genetics, 2015, 11, e1005471.                                                        | 3.5  | 92        |
| 52 | IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis.<br>PLoS Genetics, 2015, 11, e1005584.                                                                                        | 3.5  | 17        |
| 53 | OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Arabidopsis. Developmental Cell, 2015, 32, 278-289.                                                                                                  | 7.0  | 491       |
| 54 | COLD1: a cold sensor in rice. Science China Life Sciences, 2015, 58, 409-410.                                                                                                                                                | 4.9  | 15        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nature Communications, 2015, 6, 8630.                                                                                          | 12.8 | 256       |
| 56 | Cold Signal Transduction and its Interplay with Phytohormones During Cold Acclimation. Plant and Cell Physiology, 2015, 56, 7-15.                                                                    | 3.1  | 274       |
| 57 | <i>Arabidopsis </i> <scp>HSP</scp> 90 protein modulates <scp>RPP</scp> 4â€mediated<br>temperatureâ€dependent cell death and defense responses. New Phytologist, 2014, 202, 1320-1334.                | 7.3  | 69        |
| 58 | ABA Regulation of the Cold Stress Response in Plants. , 2014, , 337-363.                                                                                                                             |      | 34        |
| 59 | The glutamate carboxypeptidase AMP 1 mediates abscisic acid and abiotic stress responses in A rabidopsis. New Phytologist, 2013, 199, 135-150.                                                       | 7.3  | 35        |
| 60 | PARAQUAT RESISTANT1, a Golgi-Localized Putative Transporter Protein, Is Involved in Intracellular<br>Transport of Paraquat  Â. Plant Physiology, 2013, 162, 470-483.                                 | 4.8  | 76        |
| 61 | A missense mutation in <scp>CHS</scp> 1, a <scp>TIR</scp> â€ <scp>NB</scp> protein, induces chilling sensitivity in <scp>A</scp> rabidopsis. Plant Journal, 2013, 75, 553-565.                       | 5.7  | 59        |
| 62 | Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis.<br>Journal of Experimental Botany, 2013, 64, 1755-1767.                                           | 4.8  | 243       |
| 63 | Ethylene Signaling Negatively Regulates Freezing Tolerance by Repressing Expression of <i>CBF</i> and Type-A <i>ARR</i> Genes in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2578-2595.               | 6.6  | 569       |
| 64 | BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperatureâ€dependent plant growth and cell death in Arabidopsis. Plant Journal, 2011, 67, 1081-1093.                        | 5.7  | 76        |
| 65 | The <i>Arabidopsis LSD1</i> gene plays an important role in the regulation of low temperatureâ€dependent cell death. New Phytologist, 2010, 187, 301-312.                                            | 7.3  | 82        |
| 66 | A mutant CHS3 protein with TIRâ€NB‣RR‣IM domains modulates growth, cell death and freezing<br>tolerance in a temperatureâ€dependent manner in <i>Arabidopsis</i> . Plant Journal, 2010, 63, 283-296. | 5.7  | 170       |
| 67 | A Gain-of-Function Mutation in the Arabidopsis Disease Resistance Gene <i>RPP4</i> Confers Sensitivity to Low Temperature  Â. Plant Physiology, 2010, 154, 796-809.                                  | 4.8  | 114       |
| 68 | An Fâ€box gene, <i>CPR30</i> , functions as a negative regulator of the defense response in Arabidopsis.<br>Plant Journal, 2009, 60, 757-770.                                                        | 5.7  | 108       |
| 69 | A novel chloroplast-localized protein EMB1303 is required for chloroplast development in<br>Arabidopsis. Cell Research, 2009, 19, 1205-1216.                                                         | 12.0 | 48        |
| 70 | The Arabidopsis <i>BAP1</i> and <i>BAP2</i> Genes Are General Inhibitors of Programmed Cell Death.<br>Plant Physiology, 2007, 145, 135-146.                                                          | 4.8  | 98        |
| 71 | TheBON/CPNgene family represses cell death and promotes cell growth in Arabidopsis. Plant Journal, 2006, 45, 166-179.                                                                                | 5.7  | 101       |
| 72 | A Haplotype-Specific Resistance Gene Regulated by BONZAI1 Mediates Temperature-Dependent Growth<br>Control in Arabidopsis. Plant Cell, 2004, 16, 1060-1071.                                          | 6.6  | 292       |