
Thomas C Pulinilkunnil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7769148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of autophagy—transcriptional, posttranscriptional, translational, and posttranslational mechanisms. , 2022, , 21-38.		1
2	Whey peptides exacerbate body weight gain and perturb systemic glucose and tissue lipid metabolism in male high-fat fed mice. Food and Function, 2021, 12, 3552-3561.	4.6	0
3	Disrupted branched-chain amino acid catabolism impair cardiac insulin signaling and is associated with adverse cardiometabolic outcomes. Journal of Molecular and Cellular Cardiology, 2021, 153, 93-94.	1.9	1
4	Hemodynamic Assessment and In vivo Catabolism of Adenosine 5'-triphosphate in Doxorubicin or Isoproterenol-induced Cardiovascular Toxicity. Drug Metabolism Letters, 2021, 14, 80-88.	0.8	1
5	Nanoparticle surface-enhanced Raman spectroscopy as a noninvasive, label-free tool to monitor hematological malignancy. Nanomedicine, 2021, 16, 2175-2188.	3.3	6
6	Inhibiting BCKDK in triple negative breast cancer suppresses protein translation, impairs mitochondrial function, and potentiates doxorubicin cytotoxicity. Cell Death Discovery, 2021, 7, 241.	4.7	14
7	Deletion of BCATm increases insulin-stimulated glucose oxidation in the heart. Metabolism: Clinical and Experimental, 2021, 124, 154871.	3.4	18
8	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 4	62 Td (editio 1,430
9	Adverse Outcomes in Obese Cardiac Surgery Patients Correlates With Altered Branched-Chain Amino Acid Catabolism in Adipose Tissue and Heart. Frontiers in Endocrinology, 2020, 11, 534.	3.5	13
10	Branched-chain ketoacid overload inhibits insulin action in the muscle. Journal of Biological Chemistry, 2020, 295, 15597-15621.	3.4	26
11	Loss of function of transcription factor EB remodels lipid metabolism and cell death pathways in the cardiomyocyte. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165832.	3.8	22
12	Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells, 2020, 9, 1131.	4.1	144

13	Serum GDF15, a Promising Biomarker in Obese Patients Undergoing Heart Surgery. Frontiers in Cardiovascular Medicine, 2020, 7, 103.	2.4	21
14	Myocardial Ketones Metabolism in Heart Failure. Journal of Cardiac Failure, 2020, 26, 998-1005.	1.7	36
15	A lysosome independent role for TFEB in activating DNA repair and inhibiting apoptosis in breast cancer cells. Biochemical Journal, 2020, 477, 137-160.	3.7	28
16	Whey Peptides Stimulate Differentiation and Lipid Metabolism in Adipocytes and Ameliorate Lipotoxicity-Induced Insulin Resistance in Muscle Cells. Nutrients, 2020, 12, 425.	4.1	22
17	Editorial: Novel Concepts in Cardiac Energy Metabolism: From Biology to Disease. Frontiers in Cardiovascular Medicine, 2019, 6, 97.	2.4	1
18	IS BODY MASS INDEX THE BEST MEASURE OF OBESITY IN PATIENTS UNDERGOING CARDIAC SURGERY?. Canadian Journal of Cardiology, 2019, 35, S119-S120.	1.7	0

THOMAS C PULINILKUNNIL

#	Article	IF	CITATIONS
19	Role of branchedâ€chain amino acid–catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB Journal, 2019, 33, 8711-8731.	0.5	76
20	Heparanase protects the heart against chemical or ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 131, 29-40.	1.9	13
21	Fibrosis independent atrial fibrillation in older patients is driven by substrate leukocyte infiltration: diagnostic and prognostic implications to patients undergoing cardiac surgery. Journal of Translational Medicine, 2019, 17, 413.	4.4	11
22	Impact of Obesity on Postoperative Outcomes following cardiac Surgery (The OPOS study): rationale and design of an investigator-initiated prospective study. BMJ Open, 2019, 9, e023418.	1.9	11
23	Cyanidin-3-O-Glucoside Rich Extract From Haskap Berry Improves Glucose Homeostasis and Insulin Sensitivity in Diet-Induced Obese Mice. Canadian Journal of Diabetes, 2018, 42, S55.	0.8	3
24	GDF15 a novel circulating cardiokine is secreted from the atrial tissue of obese patients with established heart disease. Journal of Molecular and Cellular Cardiology, 2018, 124, 121.	1.9	0
25	Adverse Cardiometabolic Outcomes in Obese Patients Correlates Strongly with Defective Branched-chain Amino Acid Catabolism. Journal of Molecular and Cellular Cardiology, 2018, 124, 121-122.	1.9	0
26	Restoring TFEB action attenuates cardiomyocyte dysfunction following nutrient overload. Journal of Molecular and Cellular Cardiology, 2018, 124, 121.	1.9	0
27	Cardiomyocyte Dysfunction Following Nutrient Overload is Attenuated by Restoring Transcription Factor EB Action. Canadian Journal of Diabetes, 2018, 42, S54.	0.8	Ο
28	Branched chain α-ketoacids: Novel Regulator of Insulin and mTOR Signalling in Skeletal and Cardiac Muscle. Journal of Molecular and Cellular Cardiology, 2018, 124, 123-124.	1.9	0
29	Branched-Chain α-Ketoacids Regulate Insulin and mTOR Signalling in Skeletal and Cardiac Muscle. Canadian Journal of Diabetes, 2018, 42, S56.	0.8	1
30	Autotaxin-LPA signaling contributes to obesity-induced insulin resistance in muscle and impairs mitochondrial metabolism. Journal of Lipid Research, 2018, 59, 1805-1817.	4.2	41
31	Myocardial Insulin Signaling and Autophagy. , 2018, , 101-115.		Ο
32	Autophagic dysregulation in doxorubicin cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2017, 104, 1-8.	1.9	153
33	Dieldrin Augments mTOR Signaling and Regulates Genes Associated with Cardiovascular Disease in the Adult Zebrafish Heart (<i>Danio rerio</i>). Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 375-385.	2.5	11
34	Autotaxin Is Regulated by Glucose and Insulin in Adipocytes. Endocrinology, 2017, 158, 791-803.	2.8	28
35	Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research. Scientific Reports, 2017, 7, 3612.	3.3	49
36	The MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation. Molecular Cancer Research, 2017, 15, 1637-1643.	3.4	102

#	Article	IF	CITATIONS
37	Cardiac complications of congenital disorders of glycosylation (CDG): a systematic review of the literature. Journal of Inherited Metabolic Disease, 2017, 40, 657-672.	3.6	50
38	Heparanase Overexpression Induces Glucagon Resistance and Protects Animals From Chemically Induced Diabetes. Diabetes, 2017, 66, 45-57.	0.6	12
39	Changes in Circulating Monocyte Subsets (CD16 Expression) and Neutrophil-to-Lymphocyte Ratio Observed in Patients Undergoing Cardiac Surgery. Frontiers in Cardiovascular Medicine, 2017, 4, 12.	2.4	11
40	Insulin Signaling in Cardiac Health and Disease. , 2017, , 317-346.		1
41	Lysophosphatidic acid receptor mRNA levels in heart and white adipose tissue are associated with obesity in mice and humans. PLoS ONE, 2017, 12, e0189402.	2.5	15
42	Regulation of Autotaxin and its Role in Obesity-Induced Tissue Insulin Resistance. Canadian Journal of Diabetes, 2016, 40, S19-S20.	0.8	0
43	Glucolipotoxicity diminishes cardiomyocyte TFEB and inhibits lysosomal autophagy during obesity and diabetes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1893-1910.	2.4	59
44	Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochemical Journal, 2016, 473, 3769-3789.	3.7	90
45	Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise. Physiological Reports, 2015, 3, e12444.	1.7	16
46	Impact of Reduced ATGL-Mediated Adipocyte Lipolysis on Obesity-Associated Insulin Resistance and Inflammation in Male Mice. Endocrinology, 2015, 156, 3610-3624.	2.8	143
47	Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E879-E890.	3.5	29
48	The Pathophysiology of Cardiac Hypertrophy and Heart Failure. , 2014, , 51-78.		23
49	Diving into the ice bucket challenge. Cmaj, 2014, 186, 1404-1405.	2.0	Ο
50	Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature, 2014, 508, 258-262.	27.8	387
51	The role of ubiquitin ligases in cardiac disease. Journal of Molecular and Cellular Cardiology, 2014, 71, 43-53.	1.9	70
52	Cardiac-specific adipose triglyceride lipase overexpression protects from cardiac steatosis and dilated cardiomyopathy following diet-induced obesity. International Journal of Obesity, 2014, 38, 205-215.	3.4	58
53	AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia, 2014, 57, 1693-1702.	6.3	105
54	AMPK-Dependent Inhibitory Phosphorylation of ACC Is Not Essential for Maintaining Myocardial Fatty Acid Oxidation. Circulation Research, 2014, 115, 518-524.	4.5	43

THOMAS C PULINILKUNNIL

#	Article	IF	CITATIONS
55	Skeletal Muscle Triacylglycerol Hydrolysis Does Not Influence Metabolic Complications of Obesity. Diabetes, 2013, 62, 3350-3361.	0.6	60
56	Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nature Medicine, 2013, 19, 1649-1654.	30.7	674
57	Cardiomyocyte specific adipose triglyceride lipase overexpression prevents doxorubicin induced cardiac dysfunction in female mice. Heart, 2013, 99, 1041-1047.	2.9	15
58	Early structural and metabolic cardiac remodelling in response to inducible adipose triglyceride lipase ablation. Cardiovascular Research, 2013, 99, 442-451.	3.8	52
59	Cardiomyocyte-specific ablation of CD36 improves post-ischemic functional recovery. Journal of Molecular and Cellular Cardiology, 2013, 63, 180-188.	1.9	63
60	Myocardial Adipose Triglyceride Lipase Overexpression Protects Diabetic Mice From the Development of Lipotoxic Cardiomyopathy. Diabetes, 2013, 62, 1464-1477.	0.6	78
61	Myocardial triacylglycerol metabolism. Journal of Molecular and Cellular Cardiology, 2013, 55, 101-110.	1.9	59
62	Myocardial ATGL Overexpression Decreases the Reliance on Fatty Acid Oxidation and Protects against Pressure Overload-Induced Cardiac Dysfunction. Molecular and Cellular Biology, 2012, 32, 740-750.	2.3	95
63	AMPK and Metabolic Remodeling in Cardiac Disease. , 2012, , 113-150.		0
64	289 Cardiomyocyte-specific ATGL over-expression prevents doxorubicin-induced cardiac dysfunction in mice. Canadian Journal of Cardiology, 2011, 27, S167-S168.	1.7	0
65	Cardiac triglyceride accumulation following acute lipid excess occurs through activation of a FoxO1–iNOS–CD36 pathway. Free Radical Biology and Medicine, 2011, 51, 352-363.	2.9	39
66	Adrenergic Regulation of AMP-activated Protein Kinase in Brown Adipose Tissue in Vivo. Journal of Biological Chemistry, 2011, 286, 8798-8809.	3.4	74
67	Gene knockout of Acc2 has little effect on body weight, fat mass, or food intake. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7598-7603.	7.1	93
68	Inhibition of Â-Cell Sodium-Calcium Exchange Enhances Glucose-Dependent Elevations in Cytoplasmic Calcium and Insulin Secretion. Diabetes, 2010, 59, 1686-1693.	0.6	35
69	Short Communication: Ischemia/Reperfusion Tolerance Is Time-of-Day–Dependent. Circulation Research, 2010, 106, 546-550.	4.5	215
70	Direct Regulation of Myocardial Triglyceride Metabolism by the Cardiomyocyte Circadian Clock. Journal of Biological Chemistry, 2010, 285, 2918-2929.	3.4	96
71	Ischemia–reperfusion alters cardiac lipoprotein lipase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 171-175.	2.4	7
72	Adipose Triglyceride Lipase Deficiency Causes Tissue-specific Changes in Insulin Signaling. Journal of Biological Chemistry, 2009, 284, 30218-30229.	3.4	101

THOMAS C PULINILKUNNIL

#	Article	IF	CITATIONS
73	Neuronal Protein Tyrosine Phosphatase 1B Deficiency Results in Inhibition of Hypothalamic AMPK and Isoform-Specific Activation of AMPK in Peripheral Tissues. Molecular and Cellular Biology, 2009, 29, 4563-4573.	2.3	72
74	Distinct Early Signaling Events Resulting From the Expression of the PRKAG2 R302Q Mutant of AMPK Contribute to Increased Myocardial Glycogen. Circulation: Cardiovascular Genetics, 2009, 2, 457-466.	5.1	31
75	Cardiac glycogen accumulation after dexamethasone is regulated by AMPK. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1753-H1762.	3.2	29
76	AMPK control of myocardial fatty acid metabolism fluctuates with the intensity of insulin-deficient diabetes. Journal of Molecular and Cellular Cardiology, 2007, 42, 333-342.	1.9	56
77	Metformin influences cardiomyocyte cell death by pathways that are dependent and independent of caspase-3. Diabetologia, 2006, 49, 2174-2184.	6.3	53
78	Induction of mitochondrial nitrative damage and cardiac dysfunction by chronic provision of dietary ï‰-6 polyunsaturated fatty acids. Free Radical Biology and Medicine, 2006, 41, 1413-1424.	2.9	52
79	Acute intralipid infusion reduces cardiac luminal lipoprotein lipase but recruits additional enzyme from cardiomyocytes. Cardiovascular Research, 2006, 72, 124-133.	3.8	10
80	Altered cardiac fatty acid composition and utilization following dexamethasone-induced insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E420-E427.	3.5	28
81	Cardiac lipoprotein lipase: Metabolic basis for diabetic heart disease. Cardiovascular Research, 2006, 69, 329-340.	3.8	70
82	β-Agonist stimulation produces changes in cardiac AMPK and coronary lumen LPL only during increased workload. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E1120-E1127.	3.5	26
83	Lysophosphatidic acid-mediated augmentation of cardiomyocyte lipoprotein lipase involves actin cytoskeleton reorganization. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2802-H2810.	3.2	32
84	The metabolic "switch―AMPK regulates cardiac heparin-releasable lipoprotein lipase. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E246-E253.	3.5	83
85	Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H768-H776.	3.2	119
86	Single-Dose Dexamethasone Induces Whole-Body Insulin Resistance and Alters Both Cardiac Fatty Acid and Carbohydrate Metabolism. Diabetes, 2004, 53, 1790-1797.	0.6	101
87	Brief episode of STZ-induced hyperglycemia produces cardiac abnormalities in rats fed a diet rich in n-6 PUFA. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2518-H2527.	3.2	29
88	Role of dietary fatty acids and acute hyperglycemia in modulating cardiac cell death. Nutrition, 2004, 20, 916-923.	2.4	40
89	Increased efflux of glutathione conjugate in acutely diabetic cardiomyocytes. Canadian Journal of Physiology and Pharmacology, 2004, 82, 879-887.	1.4	29
90	Palmitoyl lysophosphatidylcholine mediated mobilization of LPL to the coronary luminal surface requires PKC activation. Journal of Molecular and Cellular Cardiology, 2004, 37, 931-938.	1.9	15

#	Article	IF	CITATIONS
91	Evidence for rapid "metabolic switching―through lipoprotein lipase occupation of endothelial-binding sites. Journal of Molecular and Cellular Cardiology, 2003, 35, 1093-1103.	1.9	41
92	Circulating triglyceride lipolysis facilitates lipoprotein lipase translocation from cardiomyocyte to myocardial endothelial lining. Cardiovascular Research, 2003, 59, 788-797.	3.8	34