Matija Cuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7768174/publications.pdf Version: 2024-02-01

ΜΑΤΙΙΑ ΟΙΙΚ

#	Article	IF	CITATIONS
1	Making the Moon from a Fast-Spinning Earth: A Giant Impact Followed by Resonant Despinning. Science, 2012, 338, 1047-1052.	12.6	512
2	The Origin of the Moon Within a Terrestrial Synestia. Journal of Geophysical Research E: Planets, 2018, 123, 910-951.	3.6	200
3	DYNAMICAL EVIDENCE FOR A LATE FORMATION OF SATURN'S MOONS. Astrophysical Journal, 2016, 820, 97	. 4.5	117
4	Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature, 2016, 539, 402-406.	27.8	102
5	1I/â€~Oumuamua as a Tidal Disruption Fragment from a Binary Star System. Astrophysical Journal Letters, 2018, 852, L15.	8.3	66
6	Orbital evolution of small binary asteroids. Icarus, 2010, 207, 732-743.	2.5	62
7	Gas-drag-assisted capture of Himalia's family. Icarus, 2004, 167, 369-381.	2.5	61
8	Long-term stability of horseshoe orbits. Monthly Notices of the Royal Astronomical Society, 2012, 426, 3051-3056.	4.4	58
9	On the Secular Behavior of Irregular Satellites. Astronomical Journal, 2004, 128, 2518-2541.	4.7	54
10	Formation and Destruction of Small Binary Asteroids. Astrophysical Journal, 2007, 659, L57-L60.	4.5	52
11	Chronology and sources of lunar impact bombardment. Icarus, 2012, 218, 69-79.	2.5	51
12	Constraints on the source of lunar cataclysm impactors. Icarus, 2010, 207, 590-594.	2.5	48
13	Constraints on the Orbital Evolution of Triton. Astrophysical Journal, 2005, 626, L113-L116.	4.5	41
14	Dynamical History of the Uranian System. Planetary Science Journal, 2020, 1, 22.	3.6	36
15	The excited spin state of Dimorphos resulting from the DART impact. Icarus, 2021, 370, 114624.	2.5	33
16	ON THE DYNAMICS AND ORIGIN OF HAUMEA'S MOONS. Astronomical Journal, 2013, 146, 89.	4.7	21
17	Hungaria asteroid family as the source of aubrite meteorites. Icarus, 2014, 239, 154-159.	2.5	20
18	Yarkovsky-driven spreading of the Eureka family of Mars Trojans. Icarus, 2015, 252, 339-346.	2.5	20

ΜΑΤΙJΑ CUK

#	Article	IF	CITATIONS
19	Excitation of Lunar Eccentricity by Planetary Resonances. Science, 2007, 318, 244-244.	12.6	18
20	The energy budget and figure of Earth during recovery from the Moon-forming giant impact. Earth and Planetary Science Letters, 2020, 530, 115885.	4.4	15
21	Irregular satellite capture during planetary resonance passage. Icarus, 2006, 183, 362-372.	2.5	14
22	Dynamical evolution of the Hungaria asteroids. Icarus, 2010, 210, 644-654.	2.5	14
23	The fate of primordial lunar Trojans. Icarus, 2009, 199, 237-244.	2.5	11
24	Early Dynamics of the Lunar Core. Journal of Geophysical Research E: Planets, 2019, 124, 2917-2928.	3.6	10
25	Planetary chaos and the (In)stability of Hungaria asteroids. Icarus, 2018, 304, 9-13.	2.5	8
26	Barrel Instability in Binary Asteroids. Planetary Science Journal, 2021, 2, 231.	3.6	8
27	Rebuttal to the comment by Malhotra and Strom on "Constraints on the source of lunar cataclysm impactorsâ€: Icarus, 2011, 216, 363-365.	2.5	6
28	Evidence for a Past Martian Ring from the Orbital Inclination of Deimos. Astrophysical Journal Letters, 2020, 896, L28.	8.3	6
29	Tidal Evolution of the Earth–Moon System with a High Initial Obliquity. Planetary Science Journal, 2021, 2, 147.	3.6	5
30	Resonances near the orbit of 2003 VB\$_{12}\$ (Sedna). Proceedings of the International Astronomical Union, 2004, 2004, 341-348.	0.0	3
31	Lunar shape does not record a past eccentric orbit. Icarus, 2011, 211, 97-100.	2.5	3
32	Three-body Resonances in the Saturnian System. Astrophysical Journal Letters, 2022, 926, L18.	8.3	3
33	Cupid is not Doomed Yet: On the Stability of the Inner Moons of Uranus. Astronomical Journal, 2022, 164, 38.	4.7	2
34	Simulating the Phases of the Moon Shortly After Its Formation. Physics Teacher, 2014, 52, 239-240.	0.3	1
35	Secular Resonance Between lapetus and the Giant Planets. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	1
36	Kick for the cosmic clockwork. Nature Geoscience, 2012, 5, 7-8.	12.9	0