Yong-Hwan Moon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7767916/publications.pdf

Version: 2024-02-01

236925 206112 2,574 50 25 citations h-index papers

g-index 51 51 51 3178 docs citations times ranked citing authors all docs

48

#	Article	IF	Citations
1	Non-TZF Transcriptional Activator AtC3H12 Negatively Affects Seed Germination and Seedling Development in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 1572.	4.1	2
2	AtERF71/HRE2, an Arabidopsis AP2/ERF Transcription Factor Gene, Contains Both Positive and Negative Cis-Regulatory Elements in Its Promoter Region Involved in Hypoxia and Salt Stress Responses. International Journal of Molecular Sciences, 2022, 23, 5310.	4.1	16
3	Non-TZF Protein AtC3H59/ZFWD3 Is Involved in Seed Germination, Seedling Development, and Seed Development, Interacting with PPPDE Family Protein Desi1 in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 4738.	4.1	5
4	Two Alternative Splicing Variants of AtERF73/HRE1, HRE1 \hat{l} ± and HRE1 \hat{l} 2, Have Differential Transactivation Activities in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 6984.	4.1	7
5	Investigation of a Novel Salt Stress-Responsive Pathway Mediated by Arabidopsis DEAD-Box RNA Helicase Gene AtRH17 Using RNA-Seq Analysis. International Journal of Molecular Sciences, 2020, 21, 1595.	4.1	15
6	A 2.41-pJ/bit 5.4-Gb/s Dual-Loop Reference-Less CDR With Fully Digital Quarter-Rate Linear Phase Detector for Embedded DisplayPort. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 2907-2920.	5.4	4
7	Arabidopsis non-TZF gene AtC3H17 functions as a positive regulator inÂsalt stress response. Biochemical and Biophysical Research Communications, 2018, 498, 954-959.	2.1	44
8	Overexpression of the DEAD-Box RNA Helicase Gene AtRH17 Confers Tolerance to Salt Stress in Arabidopsis. International Journal of Molecular Sciences, 2018, 19, 3777.	4.1	26
9	Arabidopsis AtNAP functions as a negative regulator via repression of AREB1 in salt stress response. Planta, 2017, 245, 329-341.	3.2	54
10	Enhanced resistance of PsbS-deficient rice (Oryza sativa L.) to fungal and bacterial pathogens. Journal of Plant Biology, 2016, 59, 616-626.	2.1	13
11	AtC3H17, a Non-Tandem CCCH Zinc Finger Protein, Functions as a Nuclear Transcriptional Activator and Has Pleiotropic Effects on Vegetative Development, Flowering and Seed Development in Arabidopsis. Plant and Cell Physiology, 2016, 57, 603-615.	3.1	34
12	Arabidopsis Qc-SNARE gene AtSFT12 is involved in salt and osmotic stress responses and Na+accumulation in vacuoles. Plant Cell Reports, 2015, 34, 1127-1138.	5.6	26
13	Arabidopsis AtERF71/HRE2 functions as transcriptional activator via cis-acting GCC box or DRE/CRT element and is involved in root development through regulation of root cell expansion. Plant Cell Reports, 2015, 34, 223-231.	5.6	55
14	Production of superoxide from Photosystem II in a rice (Oryza sativaL.) mutant lacking PsbS. BMC Plant Biology, 2014, 14, 242.	3.6	83
15	The Arabidopsis chloroplast protein S-RBP11 is involved in oxidative and salt stress responses. Plant Cell Reports, 2014, 33, 837-847.	5.6	7
16	Arabidopsis HRE1 \hat{l}_{\pm} , a splicing variant of AtERF73/HRE1, functions as a nuclear transcription activator in hypoxia response and root development. Plant Cell Reports, 2014, 33, 1255-1262.	5.6	20
17	A 2.2-mW 20–135-MHz False-Lock-Free DLL for Display Interface in 0.15- \$muhbox{m}\$ CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61, 554-558.	3.0	7
18	Depletion of Aurora A leads to upregulation of FoxO1 to induce cell cycle arrest in hepatocellular carcinoma cells. Cell Cycle, 2013, 12, 67-75.	2.6	33

#	Article	IF	CITATIONS
19	A 1.62/2.7/5.4 Gbps Clock and Data Recovery Circuit for DisplayPort 1.2 with a single VCO. Journal of Semiconductor Technology and Science, 2013, 13, 185-192.	0.4	1
20	A Spread Spectrum Clock Generator for DisplayPort 1.2 with a Hershey-Kiss Modulation Profile. Journal of Semiconductor Technology and Science, 2013, 13, 282-290.	0.4	0
21	A 1.7 Gbps DLL-Based Clock Data Recovery for a Serial Display Interface in 0.35-μm CMOS. ETRI Journal, 2012, 34, 35-43.	2.0	О
22	Identification of a C2H2-type zinc finger transcription factor (ZAT10) from Arabidopsis as a substrate of MAP kinase. Plant Cell Reports, 2012, 31, 737-745.	5 . 6	67
23	Arabidopsis MKKK20 is involved in osmotic stress response via regulation of MPK6 activity. Plant Cell Reports, 2012, 31, 217-224.	5 . 6	71
24	Analysis of Putative Downstream Genes of Arabidopsis AtERF71/HRE2 Transcription Factor using a Microarray. Journal of Life Science, 2012, 22, 1359-1370.	0.2	3
25	Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochemical and Biophysical Research Communications, 2011, 412, 150-154.	2.1	94
26	AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis. Biochemical and Biophysical Research Communications, 2011, 414, 135-141.	2.1	79
27	Arabidopsis lenc1 mutant displays reduced ABA accumulation by low AtNCED3 expression under osmotic stress. Journal of Plant Physiology, 2011, 168, 140-147.	3.5	14
28	EMF1 Interacts with EIP1, EIP6 or EIP9 Involved in the Regulation of Flowering Time in Arabidopsis. Plant and Cell Physiology, 2011, 52, 1376-1388.	3.1	71
29	A 4Gb/s Adaptive FFE/DFE Receiver with a Data-Dependent Jitter Measurement. IEICE Transactions on Electronics, 2011, E94-C, 1779-1786.	0.6	2
30	Rice ternary MADS protein complexes containing class B MADS heterodimer. Biochemical and Biophysical Research Communications, 2010, 401, 598-604.	2.1	25
31	Expression and pH-dependence of the Photosystem II Subunit S from Arabidopsis thaliana. Bulletin of the Korean Chemical Society, 2010, 31, 1479-1484.	1.9	3
32	Construction and Analysis of Binary Vectors for Co-Overexpression, Tissue- or Development-Specific Expression and Stress-Inducible Expression in Plant. Journal of Life Science, 2010, 20, 1314-1323.	0.2	0
33	Temporal and Spatial Requirement of EMF1 Activity for Arabidopsis Vegetative and Reproductive Development. Molecular Plant, 2009, 2, 643-653.	8.3	25
34	Effects of Epiphytic Load on the Photosynthetic Performance of a Seagrass, Zostera marina, Monitored In Vivo by Chlorophyll Fluorescence Imaging. Journal of Plant Biology, 2009, 52, 171-175.	2.1	4
35	OsDEG10 encoding a small RNA-binding protein is involved in abiotic stress signaling. Biochemical and Biophysical Research Communications, 2009, 380, 597-602.	2.1	24
36	Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress. Biochemical and Biophysical Research Communications, 2008, 375, 80-85.	2.1	147

3

#	Article	IF	CITATIONS
37	Dependence of reaction center-type energy-dependent quenching on photosystem II antenna size. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 773-780.	1.0	31
38	Effects of benzyladenine and abscisic acid on the disassembly process of photosystems in anArabidopsis delayed-senescence mutant, or e9. Journal of Plant Biology, 2005, 48, 170-177.	2.1	6
39	Interaction of Polycomb-group proteins controlling flowering in <i>Arabidopsis </i> . Development (Cambridge), 2004, 131, 5263-5276.	2.5	491
40	Defects in a proteolytic step of light-harvesting complex II in anArabidopsis stay-green mutant, ore 10, during dark-induced leaf senescence. Journal of Plant Biology, 2004, 47, 330-337.	2.1	8
41	Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta, 2003, 217, 904-911.	3.2	76
42	Mechanisms of floral repression in Arabidopsis. Current Opinion in Plant Biology, 2003, 6, 29-35.	7.1	47
43	Increased Stability of LHCII by Aggregate Formation during Dark-Induced Leaf Senescence in the Arabidopsis Mutant, ore10. Plant and Cell Physiology, 2003, 44, 1368-1377.	3.1	41
44	EMF Genes Maintain Vegetative Development by Repressing the Flower Program in Arabidopsis. Plant Cell, 2003, 15, 681-693.	6.6	119
45	EMF1, A Novel Protein Involved in the Control of Shoot Architecture and Flowering in Arabidopsis. Plant Cell, 2001, 13, 1865-1875.	6.6	100
46	EMF1, A Novel Protein Involved in the Control of Shoot Architecture and Flowering in Arabidopsis. Plant Cell, 2001, 13, 1865-1875.	6.6	94
47	Two rice MADS domain proteins interact with OsMADS1. Plant Molecular Biology, 2000, 44, 513-527.	3.9	88
48	Determination of the Motif Responsible for Interaction between the Rice APETALA1/AGAMOUS-LIKE9 Family Proteins Using a Yeast Two-Hybrid System1. Plant Physiology, 1999, 120, 1193-1204.	4.8	138
49	Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant Molecular Biology, 1999, 40, 419-429.	3.9	126
50	Identification of a rice APETALA3 homologue by yeast two-hybrid screening. Plant Molecular Biology, 1999, 40, 167-177.	3.9	127