Federico Corni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7767883/publications.pdf

Version: 2024-02-01

567281 526287 34 735 15 27 citations h-index g-index papers 36 36 36 333 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrogen and helium bubbles in silicon. Materials Science and Engineering Reports, 2000, 27, 1-52.	31.8	131
2	Hydrogen-related complexes as the stressing species in high-fluence, hydrogen-implanted, single-crystal silicon. Physical Review B, 1992, 46, 2061-2070.	3.2	79
3	Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy. Physical Review B, 2000, 61, 10154-10166.	3.2	68
4	Helium-implanted silicon: A study of bubble precursors. Journal of Applied Physics, 1999, 85, 1401-1408.	2.5	47
5	Porosity in low dielectric constant SiOCH films depth profiled by positron annihilation spectroscopy. Journal of Applied Physics, 2004, 95, 2348-2354.	2.5	45
6	Helium in silicon: Thermal-desorption investigation of bubble precursors. Physical Review B, 1997, 56, 7331-7338.	3.2	44
7	Solidâ€phase epitaxial growth of Geâ€6i alloys made by ion implantation. Journal of Applied Physics, 1992, 71, 2644-2649.	2.5	38
8	He-implantation induced defects in Si studied by slow positron annihilation spectroscopy. Journal of Applied Physics, 1999, 85, 2390-2397.	2.5	32
9	High-dose helium-implanted single-crystal silicon: Annealing behavior. Journal of Applied Physics, 1998, 84, 4802-4808.	2.5	30
10	Hydrogen precipitation in highly oversaturated single-crystalline silicon. Physica Status Solidi A, 1995, 150, 539-586.	1.7	27
11	Dilute NiPt alloy interactions with Si. Applied Surface Science, 1993, 73, 197-202.	6.1	26
12	Copper–titanium thin film interaction. Microelectronic Engineering, 2004, 76, 153-159.	2.4	26
13	Ultradense gas bubbles in hydrogen- or helium-implanted (or coimplanted) silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 71, 196-202.	3.5	21
14	Thermal desorption spectra from cavities in helium-implanted silicon. Physical Review B, 2000, 61, 10183-10193.	3.2	20
15	Atomic Local Coordinations and Multivalent States in YBa ₂ Cu ₃ O _{9-Î} Superconductors. Europhysics Letters, 1987, 4, 851-856.	2.0	17
16	Primary Physical Science for Student Teachers at Kindergarten and Primary School Levels: Part lâ€"Foundations of an Imaginative Approach to Physical Science. Interchange, 2020, 51, 315-343.	1.8	14
17	An industrial educational laboratory at Ducati Foundation: narrative approaches to mechanics based upon continuum physics. International Journal of Science Education, 2018, 40, 243-267.	1.9	10
18	Visual and gestural metaphors for introducing energy to student teachers of primary school and kindergarten levels. Journal of Physics: Conference Series, 2019, 1287, 012043.	0.4	9

#	Article	IF	Citations
19	Primary Physical Science for Student Teachers at Kindergarten and Primary School Levels: Part Il—Implementation and Evaluation of a Course. Interchange, 2021, 52, 203-236.	1.8	8
20	Embodied Simulations of Forces of Nature and the Role of Energy in Physical Systems. Education Sciences, 2021, 11, 759.	2.6	6
21	Lens studies without the screen. Physics Education, 2010, 45, 21-22.	0.5	5
22	Water tank experiment clears up some refraction misconceptions. Physics Education, 2006, 41, 103-104.	0.5	4
23	A didactic proposal about Rutherford backscattering spectrometry with theoretic, experimental, simulation and application activities. European Journal of Physics, 2018, 39, 015501.	0.6	4
24	Entropy and the Experience of Heat. Entropy, 2022, 24, 646.	2.2	4
25	Narrativity in Complex Systems. Contributions From Science Education Research, 2021, , 31-50.	0.5	3
26	Young Children's Ideas about Heat Transfer Phenomena. Education Sciences, 2022, 12, 263.	2.6	3
27	Training Prospective Primary and Kindergarten Teachers on Electric Circuits Using Conceptual Metaphors. Education Sciences, 2022, 12, 457.	2.6	3
28	The Role of Playing in the Representation of the Concept of Energy: A Lab Experience for Future Primary School Teachers., 2019,, 125-137.		2
29	Teaching mechanical oscillations using an integrated curriculum. International Journal of Science Education, 1997, 19, 981-995.	1.9	1
30	The Gibbs phase rule: an experimental path for its recognition and application. European Journal of Physics, 2006, 27, 793-804.	0.6	1
31	A proposal of VnR-based dynamic modelling activities to introduce students to model-centred learning. Physics Education, 2009, 44, 618-623.	0.5	1
32	Max's Worlds: An Innovative Project for K-6 Science Education. Challenges in Physics Education, 2021, , 237-249.	0.8	1
33	Spheres rolling on an inclined track. Physics Education, 2021, 56, 055006.	0.5	0
34	Dynamic Modelling with "MLE-Energy Dynamic―for Primary School. Springer Proceedings in Physics, 2014, , 425-429.	0.2	0