Karl-Heinz Kogel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7767805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRISPR/ <i>Sp</i> Cas9â€mediated double knockout of barley Microrchidia MORC1 and MORC6a reveals their strong involvement in plant immunity, transcriptional gene silencing and plant growth. Plant Biotechnology Journal, 2022, 20, 89-102.	8.3	29
2	CRISPR/SpCas9-mediated KO of epigenetically active MORC proteins increases barley resistance to Bipolaris spot blotch and Fusarium root rot. Journal of Plant Diseases and Protection, 2022, 129, 1005-1011.	2.9	3
3	Piriformospora indica and Azotobacter chroococcum Consortium Facilitates Higher Acquisition of N, P with Improved Carbon Allocation and Enhanced Plant Growth in Oryza sativa. Journal of Fungi (Basel, Switzerland), 2022, 8, 453.	3.5	14
4	NPR1 is required for root colonization and the establishment of a mutualistic symbiosis between the beneficial bacterium Rhizobium radiobacter and barley. Environmental Microbiology, 2021, 23, 2102-2115.	3.8	7
5	Evaluation of dsRNA delivery methods for targeting macrophage migration inhibitory factor MIF in RNAi-based aphid control. Journal of Plant Diseases and Protection, 2021, 128, 1201-1212.	2.9	14
6	Biotic stress-associated microRNA families in plants. Journal of Plant Physiology, 2021, 263, 153451.	3.5	44
7	A novel plant-fungal association reveals fundamental sRNA and gene expression reprogramming at the onset of symbiosis. BMC Biology, 2021, 19, 171.	3.8	10
8	Fusarium graminearum DICER-like-dependent sRNAs are required for the suppression of host immune genes and full virulence. PLoS ONE, 2021, 16, e0252365.	2.5	22
9	Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies. Current Opinion in Biotechnology, 2021, 70, 136-142.	6.6	39
10	Comparative Analysis of Transcriptome and sRNAs Expression Patterns in the Brachypodium distachyon—Magnaporthe oryzae Pathosystems. International Journal of Molecular Sciences, 2021, 22, 650.	4.1	16
11	Establishment of a DFC-funded research group on the topic of plant-microbe communication through extracellular RNA. Trillium Extracellular Vesicles, 2021, 1, 17-23.	0.3	0
12	RNA-based technologies for insect control in plant production. Biotechnology Advances, 2020, 39, 107463.	11.7	138
13	Regulation of Cell Type-Specific Immunity Networks in Arabidopsis Roots. Plant Cell, 2020, 32, 2742-2762.	6.6	59
14	Evaluation of genome size and quantitative features of the dolipore septum as taxonomic predictors for the Serendipita â€~williamsii' species complex. Fungal Biology, 2020, 124, 781-800.	2.5	3
15	The N-acyl homoserine-lactone depleted Rhizobium radiobacter mutant RrF4NM13 shows reduced growth-promoting and resistance-inducing activities in mono- and dicotyledonous plants. Journal of Plant Diseases and Protection, 2020, 127, 769-781.	2.9	16
16	Plant Transformation Techniques: Agrobacterium- and Microparticle-Mediated Gene Transfer in Cereal Plants. Methods in Molecular Biology, 2020, 2124, 281-294.	0.9	6
17	Labeling of dsRNA for Fungal Uptake Detection Analysis. Methods in Molecular Biology, 2020, 2166, 227-238.	0.9	0
18	Cross-Kingdom Analysis of Diversity, Evolutionary History, and Site Selection within the Eukaryotic Macrophage Migration Inhibitory Factor Superfamily. Genes, 2019, 10, 740.	2.4	19

#	Article	IF	CITATIONS
19	SIGS vs HIGS: a study on the efficacy of two dsRNA delivery strategies to silence <i>Fusarium FgCYP51</i> genes in infected host and nonâ€host plants. Molecular Plant Pathology, 2019, 20, 1636-1644.	4.2	57
20	Different Components of the RNA Interference Machinery Are Required for Conidiation, Ascosporogenesis, Virulence, Deoxynivalenol Production, and Fungal Inhibition by Exogenous Double-Stranded RNA in the Head Blight Pathogen Fusarium graminearum. Frontiers in Microbiology, 2019, 10, 1662.	3.5	42
21	Further Elucidation of the Argonaute and Dicer Protein Families in the Model Grass Species Brachypodium distachyon. Frontiers in Plant Science, 2019, 10, 1332.	3.6	7
22	Nematode ascaroside enhances resistance in a broad spectrum of plant–pathogen systems. Journal of Phytopathology, 2019, 167, 265-272.	1.0	18
23	Endofungal Bacteria Increase Fitness of their Host Fungi and Impact their Association with Crop Plants. Current Issues in Molecular Biology, 2019, 30, 59-74.	2.4	16
24	The root endophytes Trametes versicolor and Piriformospora indica increase grain yield and P content in wheat. Plant and Soil, 2018, 426, 339-348.	3.7	30
25	Further analysis of barley <scp>MORC</scp> 1 using a highly efficient <scp>RNA</scp> â€guided Cas9 geneâ€editing system. Plant Biotechnology Journal, 2018, 16, 1892-1903.	8.3	75
26	Cross-kingdom RNA trafficking and environmental RNAi — nature's blueprint for modern crop protection strategies. Current Opinion in Microbiology, 2018, 46, 58-64.	5.1	176
27	A Bioinformatics Pipeline for the Analysis and Target Prediction of RNA Effectors in Bidirectional Communication During Plant–Microbe Interactions. Frontiers in Plant Science, 2018, 9, 1212.	3.6	28
28	First report of <i>Apoharknessia eucalyptorum</i> on <i>Eucalyptus dunnii</i> in Brazil. Forest Pathology, 2018, 48, e12463.	1.1	2
29	RNA-based disease control as a complementary measure to fight Fusarium fungi through silencing of the azole target Cytochrome P450 Lanosterol C-14 α-Demethylase. European Journal of Plant Pathology, 2018, 152, 1003-1010.	1.7	39
30	Detection and Characterization of Endobacteria in the Fungal Endophyte Piriformospora indica. , 2017, , 237-250.		1
31	Production, amplification and systemic propagation of redox messengers in plants? The phloem can do it all!. New Phytologist, 2017, 214, 554-560.	7.3	60
32	MORC Proteins: Novel Players in Plant and Animal Health. Frontiers in Plant Science, 2017, 8, 1720.	3.6	48
33	The Abundance of Endofungal Bacterium Rhizobium radiobacter (syn. Agrobacterium tumefaciens) Increases in Its Fungal Host Piriformospora indica during the Tripartite Sebacinalean Symbiosis with Higher Plants. Frontiers in Microbiology, 2017, 8, 629.	3.5	54
34	Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens. PLoS ONE, 2017, 12, e0183577.	2.5	19
35	An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLoS Pathogens, 2016, 12, e1005901.	4.7	409
36	Systemic Induction of NO-, Redox-, and cGMP Signaling in the Pumpkin Extrafascicular Phloem upon Local Leaf Wounding. Frontiers in Plant Science, 2016, 7, 154.	3.6	26

#	Article	IF	CITATIONS
37	Rapid Quantitative Assessment of Rhizoctonia Resistance in Roots of Selected Wheat and Barley Genotypes. Plant Disease, 2016, 100, 640-644.	1.4	2
38	Defence Reactions in Roots Elicited by Endofungal Bacteria of the Sebacinalean Symbiosis. Signaling and Communication in Plants, 2016, , 329-339.	0.7	0
39	OHMS**: Phytoplasmas dictate changes in sieve-element ultrastructure to accommodate their requirements for nutrition, multiplication and translocation. Plant Signaling and Behavior, 2016, 11, e1138191.	2.4	15
40	Non-pathogenic <i>Rhizobium radiobacter</i> F4 deploys plant beneficial activity independent of its host <i>Piriformospora indica</i> . ISME Journal, 2016, 10, 871-884.	9.8	93
41	Plant-pest Interactions under Elevated CO2 Concentration in the System Grapevine (Vitis vinifera) – Downy Mildew (Plasmopara Viticola) – Grape Berry Moth (Lobesia Botrana). Procedia Environmental Sciences, 2015, 29, 135-136.	1.4	0
42	The GHKL ATPase MORC1 Modulates Species-Specific Plant Immunity in Solanaceae. Molecular Plant-Microbe Interactions, 2015, 28, 927-942.	2.6	12
43	Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks, and actin filaments in sieve elements. Frontiers in Plant Science, 2015, 6, 650.	3.6	28
44	The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis. Frontiers in Plant Science, 2015, 6, 906.	3.6	59
45	Silencing the expression of the salivary sheath protein causes transgenerational feeding suppression in the aphid <i>Sitobion avenae</i> . Plant Biotechnology Journal, 2015, 13, 849-857.	8.3	130
46	Thanatin confers partial resistance against aflatoxigenic fungi in maize (Zea mays). Transgenic Research, 2015, 24, 885-895.	2.4	16
47	Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nature Communications, 2015, 6, 7795.	12.8	196
48	The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells. Frontiers in Microbiology, 2014, 5, 548.	3.5	27
49	<i>N</i> -Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway. Plant Cell, 2014, 26, 2708-2723.	6.6	166
50	Direct and individual analysis of stressâ€related phytohormone dispersion in the vascular system of <i><scp>C</scp>ucurbita maxima</i> after flagellin 22 treatment. New Phytologist, 2014, 201, 1176-1182.	7.3	22
51	<scp><i>N</i></scp> <i>â€</i> acylâ€homoserine lactonesâ€producing bacteria protect plants against plant and human pathogens. Microbial Biotechnology, 2014, 7, 580-588.	4.2	55
52	Presence of Transposons and Mycoviruses in <i>Botrytis cinerea</i> Isolates Collected from a German Grapevine Growing Region. Journal of Phytopathology, 2014, 162, 582-595.	1.0	11
53	The Compromised Recognition of Turnip Crinkle Virus1 Subfamily of Microrchidia ATPases Regulates Disease Resistance in Barley to Biotrophic and Necrotrophic Pathogens. Plant Physiology, 2014, 164, 866-878.	4.8	16
54	RNase E Affects the Expression of the Acyl-Homoserine Lactone Synthase Gene <i>sinl</i> in Sinorhizobium meliloti. Journal of Bacteriology, 2014, 196, 1435-1447.	2.2	34

#	Article	IF	CITATIONS
55	Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid. Plant Physiology, 2014, 166, 2133-2151.	4.8	76
56	Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and -2 as repressors of the pathogen-inducible gene HvGER4c. Molecular Genetics and Genomics, 2014, 289, 1331-1345.	2.1	38
57	New wind in the sails: improving the agronomic value of crop plants through <scp>RNA</scp> iâ€mediated gene silencing. Plant Biotechnology Journal, 2014, 12, 821-831.	8.3	205
58	Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly <i>Lucilia sericata</i> . Biological Chemistry, 2014, 395, 649-656.	2.5	45
59	The Mutualistic Fungus <i>Piriformospora indica</i> Protects Barley Roots from a Loss of Antioxidant Capacity Caused by the Necrotrophic Pathogen <i>Fusarium culmorum</i> . Molecular Plant-Microbe Interactions, 2013, 26, 599-605.	2.6	88
60	Homoserine Lactones Influence the Reaction of Plants to Rhizobia. International Journal of Molecular Sciences, 2013, 14, 17122-17146.	4.1	77
61	Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to <i>Fusarium</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19324-19329.	7.1	361
62	Modified N-acyl-homoserine lactones as chemical probes for the elucidation of plant–microbe interactions. Organic and Biomolecular Chemistry, 2013, 11, 6994.	2.8	12
63	Phytoplasma-Triggered Ca ²⁺ Influx Is Involved in Sieve-Tube Blockage. Molecular Plant-Microbe Interactions, 2013, 26, 379-386.	2.6	69
64	Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus. Frontiers in Plant Science, 2013, 4, 228.	3.6	48
65	Root-Based Innate Immunity and Its Suppression by the Mutualistic Fungus Piriformospora indica. Soil Biology, 2013, , 223-237.	0.8	3
66	Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signaling and Behavior, 2012, 7, 178-181.	2.4	109
67	The Mutualistic Fungus <i>Piriformospora indica</i> Colonizes <i>Arabidopsis</i> Roots by Inducing an Endoplasmic Reticulum Stress–Triggered Caspase-Dependent Cell Death. Plant Cell, 2012, 24, 794-809.	6.6	128
68	Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20543-20548.	7.1	87
69	Ethylene Supports Colonization of Plant Roots by the Mutualistic Fungus Piriformospora indica. PLoS ONE, 2012, 7, e35502.	2.5	77
70	CRT1 is a nuclear-translocated MORC endonuclease that participates in multiple levels of plant immunity. Nature Communications, 2012, 3, 1297.	12.8	41
71	Enhanced antifungal and insect α-amylase inhibitory activities of Alpha-TvD1, a peptide variant of Tephrosia villosa defensin (TvD1) generated through in vitro mutagenesis. Peptides, 2012, 33, 220-229.	2.4	21
72	Molecular and phenotypic characterization of Sebacina vermifera strains associated with orchids, and the description of Piriformospora williamsii sp. nov Fungal Biology, 2012, 116, 204-213.	2.5	61

#	Article	IF	CITATIONS
73	An image classification approach to analyze the suppression of plant immunity by the human pathogen SalmonellaTyphimurium. BMC Bioinformatics, 2012, 13, 171.	2.6	23
74	<i>Piriformospora indica</i> —a mutualistic basidiomycete with an exceptionally large plant host range. Molecular Plant Pathology, 2012, 13, 508-518.	4.2	166
75	The Antimicrobial Peptide Thanatin Reduces Fungal Infections in <i>Arabidopsis</i> . Journal of Phytopathology, 2012, 160, 606-610.	1.0	16
76	<i>N</i> -Acyl-Homoserine Lactone Confers Resistance toward Biotrophic and Hemibiotrophic Pathogens via Altered Activation of AtMPK6 Â Â. Plant Physiology, 2011, 157, 1407-1418.	4.8	148
77	Barley Leaf Transcriptome and Metabolite Analysis Reveals New Aspects of Compatibility and <i>Piriformospora indica</i> –Mediated Systemic Induced Resistance to Powdery Mildew. Molecular Plant-Microbe Interactions, 2011, 24, 1427-1439.	2.6	125
78	Insect Antimicrobial Peptides as New Weapons Against Plant Pathogens. , 2011, , 123-144.		2
79	Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming. Frontiers in Plant Science, 2011, 2, 39.	3.6	25
80	Silencing ?1,2-xylosyltransferase in Transgenic Tomato Fruits Reveals xylose as Constitutive Component of Ige-Binding Epitopes. Frontiers in Plant Science, 2011, 2, 42.	3.6	19
81	Endophytic Life Strategies Decoded by Genome and Transcriptome Analyses of the Mutualistic Root Symbiont Piriformospora indica. PLoS Pathogens, 2011, 7, e1002290.	4.7	361
82	Sensitivity of Barley Leaves and Roots to Fusaric Acid, but not to H _{2} O _{2} , Is Associated with Susceptibility to <i>Fusarium</i> Infections. Journal of Phytopathology, 2011, 159, 720-725.	1.0	6
83	STARTS – A stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley. Plant Journal, 2011, 67, 726-735.	5.7	33
84	Dau c 1.01 and Dau c 1.02-silenced transgenic carrot plants show reduced allergenicity to patients with carrot allergy. Transgenic Research, 2011, 20, 547-556.	2.4	22
85	Broad-Spectrum Suppression of Innate Immunity Is Required for Colonization of Arabidopsis Roots by the Fungus <i>Piriformospora indica</i> ÂÂÂ. Plant Physiology, 2011, 156, 726-740.	4.8	296
86	Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant and Soil, 2010, 333, 59-70.	3.7	102
87	Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6198-6203.	7.1	114
88	<i>Piriformospora indica</i> mycorrhization increases grain yield by accelerating early development of barley plants. Plant Signaling and Behavior, 2010, 5, 1685-1687.	2.4	28
89	The Mycorrhiza Fungus <i>Piriformospora indica</i> Induces Fast Root-Surface pH Signaling and Primes Systemic Alkalinization of the Leaf Apoplast Upon Powdery Mildew Infection. Molecular Plant-Microbe Interactions, 2009, 22, 1179-1185.	2.6	61
90	Induced resistance triggered byPiriformospora indica. Plant Signaling and Behavior, 2009, 4, 215-216.	2.4	23

#	Article	IF	CITATIONS
91	Phytohormones in plant root- <i>Piriformospora indica</i> mutualism. Plant Signaling and Behavior, 2009, 4, 669-671.	2.4	44
92	Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. Journal of Experimental Botany, 2009, 60, 4105-4114.	4.8	68
93	Ectopic expression of barley constitutively activated ROPs supports susceptibility to powdery mildew and bacterial wildfire in tobacco. European Journal of Plant Pathology, 2009, 125, 317-327.	1.7	5
94	Over-expression of the cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungal pathogens. Theoretical and Applied Genetics, 2009, 118, 455-463.	3.6	83
95	Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with <i>Piriformospora indica</i> . Plant Journal, 2009, 59, 461-474.	5.7	183
96	Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica. Fungal Genetics and Biology, 2009, 46, 543-550.	2.1	52
97	The Sebacinoid Fungus Piriformospora indica: an Orchid Mycorrhiza Which May Increase Host Plant Reproduction and Fitness. , 2009, , 99-112.		18
98	Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. Plant Cell Reports, 2008, 27, 1877-1887.	5.6	65
99	Nitric oxide generation in <i>Vicia faba </i> phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytologist, 2008, 178, 634-646.	7.3	66
100	Salt tolerance of barley induced by the root endophyte <i>Piriformospora indica</i> is associated with a strong increase in antioxidants. New Phytologist, 2008, 180, 501-510.	7.3	489
101	Detection and identification of bacteria intimately associated with fungi of the order <i>Sebacinales</i> . Cellular Microbiology, 2008, 10, 2235-2246.	2.1	154
102	Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. Journal of Plant Physiology, 2008, 165, 60-70.	3.5	112
103	Interactive signal transfer between host and pathogen during successful infection of barley leaves by Blumeria graminis and Bipolaris sorokiniana. Journal of Plant Physiology, 2008, 165, 52-59.	3.5	18
104	Compatible host–microbe interactions: Mechanistic studies enabling future agronomical solutions. Journal of Plant Physiology, 2008, 165, 1-4.	3.5	4
105	Adaptation of aphid stylectomy for analyses of proteins and mRNAs in barley phloem sap. Journal of Experimental Botany, 2008, 59, 3297-3306.	4.8	69
106	Systemic Resistance in Arabidopsis Conferred by the Mycorrhizal Fungus Piriformospora indica Requires Jasmonic Acid Signaling and the Cytoplasmic Function of NPR1. Plant and Cell Physiology, 2008, 49, 1747-1751.	3.1	265
107	Analysis of the Plant Protective Potential of the Root Endophytic Fungus Piriformospora indica in Cereals. , 2007, , 343-354.		4
108	Piriformospora indica protects barley from root rot caused by Fusarium graminearum. Journal of Plant Diseases and Protection, 2007, 114, 263-268.	2.9	102

#	Article	IF	CITATIONS
109	Root cell death and systemic effects of <i>Piriformospora indica</i> : a study on mutualism. FEMS Microbiology Letters, 2007, 275, 1-7.	1.8	56
110	The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18450-18457.	7.1	372
111	Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis. Journal of Plant Physiology, 2006, 163, 657-670.	3.5	24
112	Metrafenone: studies on the mode of action of a novel cereal powdery mildew fungicide. Pest Management Science, 2006, 62, 393-401.	3.4	40
113	Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cellular Microbiology, 2006, 8, 1009-1019.	2.1	274
114	Multivesicular compartments proliferate in susceptible and resistant MLA12 â€barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytologist, 2006, 172, 563-576.	7.3	172
115	Expression of barley BAX Inhibitor-1 in carrots confers resistance toBotrytis cinerea. Molecular Plant Pathology, 2006, 7, 279-284.	4.2	39
116	Transient over-expression of barley BAX Inhibitor-1 weakens oxidative defence and MLA12-mediated resistance to Blumeria graminis f.sp. hordei. Molecular Plant Pathology, 2006, 7, 543-552.	4.2	36
117	Endophyte or parasite – what decides?. Current Opinion in Plant Biology, 2006, 9, 358-363.	7.1	317
118	Respiratory Burst Oxidase Homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp. hordei. Journal of Experimental Botany, 2006, 57, 3781-3791.	4.8	65
119	Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biological Chemistry, 2006, 387, 549-557.	2.5	69
120	Model Wheat Genotypes as Tools to Uncover Effective Defense Mechanisms Against the Hemibiotrophic Fungus Bipolaris sorokiniana. Phytopathology, 2005, 95, 528-532.	2.2	17
121	Induced disease resistance and gene expression in cereals. Cellular Microbiology, 2005, 7, 1555-1564.	2.1	90
122	Influence of N-fertilization and Fungicide Strategies on Fusarium Head Blight Severity and Mycotoxin Content in Winter Wheat. Journal of Phytopathology, 2005, 153, 551-557.	1.0	48
123	Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare). Protoplasma, 2005, 227, 17-24.	2.1	68
124	Induction of somatic embryogenesis in cultured cells of Chenopodium quinoa. Plant Cell, Tissue and Organ Culture, 2005, 81, 243-246.	2.3	13
125	Ectopic Expression of Constitutively Activated RACB in Barley Enhances Susceptibility to Powdery Mildew and Abiotic Stress. Plant Physiology, 2005, 139, 353-362.	4.8	80
126	Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16892-16897.	7.1	565

#	Article	IF	CITATIONS
127	The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13386-13391.	7.1	1,153
128	Identification and transcriptional analysis of powdery mildew-induced barley genes. Plant Science, 2005, 168, 373-380.	3.6	23
129	The White Barley Mutant Albostrians Shows a Supersusceptible but Symptomless Interaction Phenotype with the Hemibiotrophic Fungus Bipolaris sorokiniana. Molecular Plant-Microbe Interactions, 2004, 17, 366-373.	2.6	66
130	The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant Journal, 2004, 41, 291-303.	5.7	172
131	Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis. Molecular Plant Pathology, 2004, 5, 389-396.	4.2	52
132	Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Molecular Biology, 2004, 55, 1-15.	3.9	83
133	Superoxide and Hydrogen Peroxide Play Different Roles in the Nonhost Interaction of Barley and Wheat with Inappropriate formae speciales of Blumeria graminis. Molecular Plant-Microbe Interactions, 2004, 17, 304-312.	2.6	45
134	Apoplastic pH Signaling in Barley Leaves Attacked by the Powdery Mildew Fungus Blumeria graminis f. sp. hordei. Molecular Plant-Microbe Interactions, 2004, 17, 118-123.	2.6	83
135	The Barley Apoptosis Suppressor Homologue Bax Inhibitor-1 Compromises Nonhost Penetration Resistance of Barley to the Inappropriate Pathogen Blumeria graminis f. sp. tritici. Molecular Plant-Microbe Interactions, 2004, 17, 484-490.	2.6	90
136	The White Barley Mutant Albostrians Shows Enhanced Resistance to the Biotroph Blumeria graminis f. sp. hordei. Molecular Plant-Microbe Interactions, 2004, 17, 374-382.	2.6	17
137	Phloem-Mediated Remote Control by Long-Distance Signals. Progress in Botany Fortschritte Der Botanik, 2004, , 372-393.	0.3	1
138	Consistency between degree of susceptibility of barley root and spike tissue toFusarium culmorum. Mycotoxin Research, 2003, 19, 134-138.	2.3	1
139	Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance?. Planta, 2003, 216, 891-902.	3.2	213
140	Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant Journal, 2003, 36, 589-601.	5.7	123
141	Functional assessment of the pathogenesis-related protein PR-1b in barley. Plant Science, 2003, 165, 1275-1280.	3.6	29
142	Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5555-5560.	7.1	171
143	Benzothiadiazole Activates Resistance in Sunflower (Helianthus annuus) to the Root-Parasitic Weed Orobanche cuman. Phytopathology, 2002, 92, 59-64.	2.2	74
144	A Small GTP-Binding Host Protein Is Required for Entry of Powdery Mildew Fungus into Epidermal Cells of Barley. Plant Physiology, 2002, 128, 1447-1454.	4.8	147

-

#	Article	IF	CITATIONS
145	Bipolaris sorokiniana , a cereal pathogen of global concern: cytological and molecular approaches towards better control‡. Molecular Plant Pathology, 2002, 3, 185-195.	4.2	310
146	Nature's Concept. The 'New Agriculture' amidst Ecology, Economy and the Demythologization of the Gene. Journal of Agronomy and Crop Science, 2002, 188, 368-375.	3.5	5
147	Non-host resistance of barley is associated with a hydrogen peroxide burst at sites of attempted penetration by wheat powdery mildew fungus. Molecular Plant Pathology, 2001, 2, 199-205.	4.2	63
148	Differential expression of putative cell death regulator genes in near-isogenic, resistant and susceptible barley lines during interaction with the powdery mildew fungus. Plant Molecular Biology, 2001, 47, 739-748.	3.9	78
149	A Compromised Mlo Pathway Affects the Response of Barley to the Necrotrophic Fungus Bipolaris sorokiniana (Teleomorph: Cochliobolus sativus) and Its Toxins. Phytopathology, 2001, 91, 127-133.	2.2	184
150	Expression analysis of genes induced in barley after chemical activation reveals distinct disease resistance pathways. Molecular Plant Pathology, 2000, 1, 277-286.	4.2	92
151	Mutations inRor1andRor2genes cause modification of hydrogen peroxide accumulation inmlo-barley under attack from the powdery mildew fungus. Molecular Plant Pathology, 2000, 1, 287-292.	4.2	36
152	Barley Mla and Rar mutants compromised in the hypersensitive cell death response against Blumeria graminis f.sp. hordei are modified in their ability to accumulate reactive oxygen intermediates at sites of fungal invasion. Planta, 2000, 212, 16-24.	3.2	68
153	The Ambivalence of the Barley Mlo Locus: Mutations Conferring Resistance Against Powdery Mildew (Blumeria graminis f. sp. hordei) Enhance Susceptibility to the Rice Blast Fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 1999, 12, 508-514.	2.6	179
154	A Jasmonate-responsive Lipoxygenase of Barley Leaves is Induced by Plant Activators but not by Pathogens. Journal of Plant Physiology, 1999, 154, 459-462.	3.5	23
155	Hypersensitive Cell Death and Papilla Formation in Barley Attacked by the Powdery Mildew Fungus Are Associated with Hydrogen Peroxide but Not with Salicylic Acid Accumulation1. Plant Physiology, 1999, 119, 1251-1260.	4.8	353
156	Tissue-Specific Superoxide Generation at Interaction Sites in Resistant and Susceptible Near-Isogenic Barley Lines Attacked by the Powdery Mildew Fungus (Erysiphe graminis f. sp. hordei). Molecular Plant-Microbe Interactions, 1998, 11, 292-300.	2.6	123
157	Tissue Dependence and Differential Cordycepin Sensitivity of Race-Specific Resistance Responses in the Barley—Powdery Mildew Interaction. Molecular Plant-Microbe Interactions, 1997, 10, 830-839.	2.6	46
158	In barley leaf cells, jasmonates do not act as a signal during compatible or incompatible interactions with the powdery mildew fungus (Erysiphe graminis f. sp. hordei). Journal of Plant Physiology, 1997, 150, 127-132.	3.5	16
159	Expression of ?-1,3-glucanase and chitinase in healthy, stem-rust-affected and elicitor-treated near-isogenic wheat lines showingSr5-orSr24-specified race-specific rust resistance. Planta, 1997, 201, 235-244.	3.2	61
160	Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat Plant Cell, 1996, 8, 629-643.	6.6	972
161	Resistance in barley against the powdery mildew fungus (Erysiphe graminis f.sp.hordei) is not associated with enhanced levels of endogenous jasmonates. European Journal of Plant Pathology, 1995, 101, 319-332.	1.7	40
162	Acquired Resistance in Barley (The Resistance Mechanism Induced by 2,6-Dichloroisonicotinic Acid Is a) Tj ETC	2q0 0 0 rgBT 4.8	/Overlock 10

Plant Physiology, 1994, 106, 1269-1277.

#	Article	IF	CITATIONS
163	Induction of a Thionin, the Jasmonate-Induced 6 kDa Protein of Barley by 2,6-Dechloroisonicotinic acid. Journal of Phytopathology, 1994, 140, 280-284.	1.0	31
164	A β-1,3-D-endo-mannanase from culture filtrates of the hyperparasites Verticillium lecanii and Aphanocladium album that specifically lyses the germ pore plug from uredospores of Puccinia graminis f.sp. tritici. Canadian Journal of Botany, 1992, 70, 853-860.	1.1	7
165	Elicitor-active glycoproteins in apoplastic fluids of stemrust-infected wheat leaves. Physiological and Molecular Plant Pathology, 1992, 40, 79-89.	2.5	17
166	Purification and characterization of peptides from Rhynchosporium secalis inducing necrosis in barley. Physiological and Molecular Plant Pathology, 1991, 39, 471-482.	2.5	68
167	A single glycoprotein from Puccinia graminis f. sp. tritici cell walls elicits the hypersensitive lignification response in wheat. Physiological and Molecular Plant Pathology, 1988, 33, 173-185.	2.5	61
168	A Fungal Elicitor of the Resistance Response in Wheat. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1985, 40, 743-744.	1.4	11
169	Suppression of the Hypersensitive Response in Wheat Stem Rust Interaction by Reagents with Affinity for Wheat Plasma Membrane Galactoconjugates. Journal of Plant Physiology, 1985, 118, 343-352.	3.5	23
170	Surface Galactolipids of Wheat Protoplasts as Receptors for Soybean Agglutinin and Their Possible Relevance to Host-Parasite Interaction. Plant Physiology, 1984, 76, 924-928.	4.8	21