List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7767164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological regulation on synovial fibroblast and the treatment of rheumatoid arthritis by nobiletin-loaded tetrahedral framework nucleic acids cargo tank. Chinese Chemical Letters, 2023, 34, 107549.	9.0	4
2	Tetrahedral framework nucleic acids promote the biological functions and related mechanism of synovium-derived mesenchymal stem cells and show improved articular cartilage regeneration activity in situ. Bioactive Materials, 2022, 9, 411-427.	15.6	16
3	Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioactive Materials, 2022, 8, 368-380.	15.6	142
4	Effect of tetrahedral DNA nanostructures on LPSâ€induced neuroinflammation in mice. Chinese Chemical Letters, 2022, 33, 1901-1906.	9.0	16
5	Functionalizing Framework Nucleicâ€Acidâ€Based Nanostructures for Biomedical Application. Advanced Materials, 2022, 34, e2107820.	21.0	148
6	Tetrahedral-Framework Nucleic Acids Carry Small Interfering RNA to Downregulate Toll-Like Receptor 2 Gene Expression for the Treatment of Sepsis. ACS Applied Materials & Interfaces, 2022, 14, 6442-6452.	8.0	15
7	Biomimetic Nanoerythrosomeâ€Coated Aptamer–DNA Tetrahedron/Maytansine Conjugates: pHâ€Responsive and Targeted Cytotoxicity for HER2â€Positive Breast Cancer. Advanced Materials, 2022, 34, e2109609.	21.0	158
8	Facilitating In Situ Tumor Imaging with a Tetrahedral DNA Frameworkâ€Enhanced Hybridization Chain Reaction Probe. Advanced Functional Materials, 2022, 32, .	14.9	93
9	Repair of infected bone defect with Clindamycin-Tetrahedral DNA nanostructure Complex-loaded 3D bioprinted hybrid scaffold. Chemical Engineering Journal, 2022, 435, 134855.	12.7	57
10	Tetrahedral Framework Nucleic Acids Can Alleviate Taurocholate-Induced Severe Acute Pancreatitis and Its Subsequent Multiorgan Injury in Mice. Nano Letters, 2022, 22, 1759-1768.	9.1	63
11	Applications of tetrahedral DNA nanostructures in wound repair and tissue regeneration. Burns and Trauma, 2022, 10, tkac006.	4.9	8
12	Treatment effect of DNA framework nucleic acids on diffuse microvascular endothelial cell injury after subarachnoid hemorrhage. Cell Proliferation, 2022, 55, e13206.	5.3	33
13	Tetrahedral Framework Nucleic Acids Inhibit Skin Fibrosis via the Pyroptosis Pathway. ACS Applied Materials & Interfaces, 2022, 14, 15069-15079.	8.0	24
14	Therapeutic Effects of Self-Assembled Tetrahedral Framework Nucleic Acids on Liver Regeneration in Acute Liver Failure. ACS Applied Materials & amp; Interfaces, 2022, 14, 13136-13146.	8.0	12
15	Positive Neuroplastic Effect of DNA Framework Nucleic Acids on Neuropsychiatric Diseases. , 2022, 4, 665-674.		6
16	Antiepilepticus Effects of Tetrahedral Framework Nucleic Acid via Inhibition of Gliosis-Induced Downregulation of Glutamine Synthetase and Increased AMPAR Internalization in the Postsynaptic Membrane. Nano Letters, 2022, 22, 2381-2390.	9.1	45
17	Ribociclib Inhibits P-gp-Mediated Multidrug Resistance in Human Epidermoid Carcinoma Cells. Frontiers in Pharmacology, 2022, 13, 867128.	3.5	4
18	Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages. Bioactive Materials, 2022, 14, 134-144.	15.6	77

#	Article	IF	CITATIONS
19	A DNA Nanostructure-Based Neuroprotectant against Neuronal Apoptosis <i>via</i> Inhibiting Toll-like Receptor 2 Signaling Pathway in Acute Ischemic Stroke. ACS Nano, 2022, 16, 1456-1470.	14.6	64
20	Tetrahedral Framework Nucleic Acids Connected with MicroRNA-126 Mimics for Applications in Vascular Inflammation, Remodeling, and Homeostasis. ACS Applied Materials & Interfaces, 2022, 14, 19091-19103.	8.0	10
21	Tetrahedral framework nucleic acid carrying angiogenic peptide prevents bisphosphonate-related osteonecrosis of the jaw by promoting angiogenesis. International Journal of Oral Science, 2022, 14, 23.	8.6	19
22	A Lysosomeâ€Activated Tetrahedral Nanobox for Encapsulated siRNA Delivery. Advanced Materials, 2022, 34, e2201731.	21.0	79
23	Modulation of the Crosstalk between Schwann Cells and Macrophages for Nerve Regeneration: A Therapeutic Strategy Based on a Multifunctional Tetrahedral Framework Nucleic Acids System. Advanced Materials, 2022, 34, e2202513.	21.0	80
24	Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Research, 2022, 10, .	11.4	64
25	<scp>MiRâ€26aâ€ŧetrahedral</scp> framework nucleic acids mediated osteogenesis of adiposeâ€derived mesenchymal stem cells. Cell Proliferation, 2022, 55, .	5.3	21
26	Intestinal epithelium-derived BATF3 promotes colitis-associated colon cancer through facilitating CXCL5-mediated neutrophils recruitment. Mucosal Immunology, 2021, 14, 187-198.	6.0	23
27	Polypeptide uploaded efficient nanophotosensitizers to overcome photodynamic resistance for enhanced anticancer therapy. Chemical Engineering Journal, 2021, 403, 126344.	12.7	22
28	A Framework Nucleic Acid Based Robotic Nanobee for Active Targeting Therapy. Advanced Functional Materials, 2021, 31, 2007342.	14.9	65
29	Tetrahedral framework nucleic acids act as antioxidants in acute kidney injury treatment. Chemical Engineering Journal, 2021, 413, 127426.	12.7	51
30	EpsR Negatively Regulates <i>Streptococcus mutans</i> Exopolysaccharide Synthesis. Journal of Dental Research, 2021, 100, 002203452110006.	5.2	19
31	Synthesis and Antitumor Application of Antiangiogenetic Gold Nanoclusters. ACS Applied Materials & Interfaces, 2021, 13, 11708-11720.	8.0	11
32	Tetrahedral Framework Nucleic Acid-Based Delivery of Resveratrol Alleviates Insulin Resistance: From Innate to Adaptive Immunity. Nano-Micro Letters, 2021, 13, 86.	27.0	44
33	Tetrahedral Framework Nucleic Acids Induce Immune Tolerance and Prevent the Onset of Type 1 Diabetes. Nano Letters, 2021, 21, 4437-4446.	9.1	41
34	Enhanced Penetrability of a Tetrahedral Framework Nucleic Acid by Modification with iRGD for DOX-Targeted Delivery to Triple-Negative Breast Cancer. ACS Applied Materials & Interfaces, 2021, 13, 25825-25835.	8.0	39
35	Therapeutic siCCR2 Loaded by Tetrahedral Framework DNA Nanorobotics in Therapy for Intracranial Hemorrhage. Advanced Functional Materials, 2021, 31, 2101435.	14.9	46
36	Broadening the biocompatibility of gold nanorods from rat to Macaca fascicularis: advancing clinical potential. Journal of Nanobiotechnology, 2021, 19, 195.	9.1	6

#	Article	IF	CITATIONS
37	The immune regulatory effects of tetrahedral framework nucleic acid on human T cells via the mitogenâ€activated protein kinase pathway. Cell Proliferation, 2021, 54, e13084.	5.3	8
38	The Neuroprotective Effect of MicroRNAâ€⊋2â€3p Modified Tetrahedral Framework Nucleic Acids on Damaged Retinal Neurons Via TrkB/BDNF Signaling Pathway. Advanced Functional Materials, 2021, 31, 2104141.	14.9	36
39	Angiogenic Aptamer-Modified Tetrahedral Framework Nucleic Acid Promotes Angiogenesis In Vitro and In Vivo. ACS Applied Materials & Interfaces, 2021, 13, 29439-29449.	8.0	21
40	The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioactive Materials, 2021, 6, 1676-1688.	15.6	63
41	Aptamer-guided DNA tetrahedrons as a photo-responsive drug delivery system for Mucin 1-expressing breast cancer cells. Applied Materials Today, 2021, 23, 101010.	4.3	15
42	Treating LRRK2â€Related Parkinson's Disease by Inhibiting the mTOR Signaling Pathway to Restore Autophagy. Advanced Functional Materials, 2021, 31, 2105152.	14.9	37
43	Erythromycin loaded by tetrahedral framework nucleic acids are more antimicrobial sensitive against Escherichia coli (E. coli). Bioactive Materials, 2021, 6, 2281-2290.	15.6	49
44	Tetrahedral Framework Nucleic Acids Ameliorate Insulin Resistance in Type 2 Diabetes Mellitus <i>via</i> the PI3K/Akt Pathway. ACS Applied Materials & Interfaces, 2021, 13, 40354-40364.	8.0	30
45	Tetrahedral Framework Nucleic Acids Reestablish Immune Tolerance and Restore Saliva Secretion in a Sjögren's Syndrome Mouse Model. ACS Applied Materials & Interfaces, 2021, 13, 42543-42553.	8.0	13
46	The remyelination effect of DNA framework nucleic acids on demyelinating diseases. Applied Materials Today, 2021, 24, 101098.	4.3	10
47	Non-viral vector mediated CKb11 with folic acid modification regulates macrophage polarization and DC maturation to elicit immune response against cancer. Bioactive Materials, 2021, 6, 3678-3691.	15.6	13
48	Chitosan hydrogel/3D-printed poly(εâ€caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Biomaterials, 2021, 278, 121131.	11.4	79
49	Nanomaterials and Cell Biology. Current Stem Cell Research and Therapy, 2021, 16, 2-2.	1.3	1
50	The Application of Nucleic Acids and Nucleic Acid Materials in Antimicrobial Research. Current Stem Cell Research and Therapy, 2021, 16, 66-73.	1.3	6
51	Application of Nanomaterials in Neurodegenerative Diseases. Current Stem Cell Research and Therapy, 2021, 16, 83-94.	1.3	8
52	Tetrahedral Framework Nucleic Acids Loaded with Aptamer AS1411 for siRNA Delivery and Gene Silencing in Malignant Melanoma. ACS Applied Materials & Interfaces, 2021, 13, 6109-6118.	8.0	52
53	Tetrahedral framework nucleic acids facilitate neurorestoration of facial nerves by activating the NGF/PI3K/AKT pathway. Nanoscale, 2021, 13, 15598-15610.	5.6	13
54	The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduction and Targeted Therapy, 2021, 6, 351.	17.1	110

#	Article	IF	CITATIONS
55	Bioswitchable Delivery of microRNA by Framework Nucleic Acids: Application to Bone Regeneration. Small, 2021, 17, e2104359.	10.0	70
56	Tetrahedral Framework Nucleic Acids Reverse New-Onset Type 1 Diabetes. ACS Applied Materials & Interfaces, 2021, 13, 50802-50811.	8.0	5
57	Research Progress on Antibacterial Application with Nucleic Acid and Nucleic Acid Materials. , 2021, , 167-190.		0
58	Bioswitchable Delivery of microRNA by Framework Nucleic Acids: Application to Bone Regeneration (Small 47/2021). Small, 2021, 17, 2170248.	10.0	0
59	Application of Programmable Tetrahedral Framework Nucleic Acid-Based Nanomaterials in Neurological Disorders: Progress and Prospects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 782237.	4.1	6
60	Biological Effect of Differently Sized Tetrahedral Framework Nucleic Acids: Endocytosis, Proliferation, Migration, and Biodistribution. ACS Applied Materials & Interfaces, 2021, 13, 57067-57074.	8.0	25
61	Review of craniofacial regeneration in China. Journal of Oral Rehabilitation, 2020, 47, 107-117.	3.0	Ο
62	Diversity of DNA Nanostructures and Applications in Oncotherapy. Biotechnology Journal, 2020, 15, e1900094.	3.5	13
63	Enhanced Neural Regeneration with a Concomitant Treatment of Framework Nucleic Acid and Stem Cells in Spinal Cord Injury. ACS Applied Materials & Interfaces, 2020, 12, 2095-2106.	8.0	45
64	Progress in Biomedical Applications of Tetrahedral Framework Nucleic Acid-Based Functional Systems. ACS Applied Materials & Interfaces, 2020, 12, 47115-47126.	8.0	33
65	Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nature Protocols, 2020, 15, 2728-2757.	12.0	211
66	Blood exposure to graphene oxide may cause anaphylactic death in non-human primates. Nano Today, 2020, 35, 100922.	11.9	29
67	Preventive effect of tetrahedral framework nucleic acids on bisphosphonate-related osteonecrosis of the jaw. Nanoscale, 2020, 12, 17196-17202.	5.6	12
68	Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway. Signal Transduction and Targeted Therapy, 2020, 5, 120.	17.1	61
69	Tetrahedral Framework Nucleic Acids Loading Ampicillin Improve the Drug Susceptibility against Methicillin-Resistant <i>Staphylococcus aureus</i> . ACS Applied Materials & Interfaces, 2020, 12, 36957-36966.	8.0	27
70	Nucleic acid based tetrahedral framework DNA nanostructures for fibrotic diseases therapy. Applied Materials Today, 2020, 20, 100725.	4.3	7
71	Effects of the tetrahedral framework nucleic acids on the skeletal muscle regeneration <i>in vitro</i> and <i>in vivo</i> . Materials Chemistry Frontiers, 2020, 4, 2731-2743.	5.9	7
72	Tetrahedral Framework Nucleic Acid Promotes the Treatment of Bisphosphonate-Related Osteonecrosis of the Jaws by Promoting Angiogenesis and M2 Polarization. ACS Applied Materials & Interfaces, 2020, 12, 44508-44522.	8.0	42

#	Article	IF	CITATIONS
73	Tetrahedral Framework Nucleic Acid Inhibits Chondrocyte Apoptosis and Oxidative Stress through Activation of Autophagy. ACS Applied Materials & Interfaces, 2020, 12, 56782-56791.	8.0	38
74	Tetrahedral framework nucleic acids as an advanced drug delivery system for oligonucleotide drugs. APL Materials, 2020, 8, .	5.1	2
75	Treatment of Alzheimer's disease with framework nucleic acids. Cell Proliferation, 2020, 53, e12787.	5.3	42
76	Multi-targeted Antisense Oligonucleotide Delivery by a Framework Nucleic Acid for Inhibiting Biofilm Formation and Virulence. Nano-Micro Letters, 2020, 12, 74.	27.0	41
77	Applications of Computer-Aided Design/Manufacturing Technology in Treatment of Hemifacial Microsomia. Journal of Craniofacial Surgery, 2020, 31, 1133-1136.	0.7	6
78	Recent progress in antitumor functions of the intracellular antibodies. Drug Discovery Today, 2020, 25, 1109-1120.	6.4	9
79	Effects of tetrahedral framework nucleic acid/wogonin complexes on osteoarthritis. Bone Research, 2020, 8, 6.	11.4	67
80	Hyaluronan-directed fabrication of co-doped hydroxyapatite as a dual-modal probe for tumor-specific bioimaging. Journal of Materials Chemistry B, 2020, 8, 2107-2114.	5.8	15
81	Tetrahedral Framework Nucleic Acids Deliver Antimicrobial Peptides with Improved Effects and Less Susceptibility to Bacterial Degradation. Nano Letters, 2020, 20, 3602-3610.	9.1	82
82	Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Materials Today, 2019, 24, 57-68.	14.2	114
83	Neuroprotective and Neurotherapeutic Effects of Tetrahedral Framework Nucleic Acids on Parkinson's Disease <i>in Vitro</i> . ACS Applied Materials & Interfaces, 2019, 11, 32787-32797.	8.0	38
84	Corneal Healing: Tetrahedral Framework Nucleic Acids Promote Corneal Epithelial Wound Healing in Vitro and in Vivo (Small 31/2019). Small, 2019, 15, 1970162.	10.0	4
85	Engineering DNA–Nanozyme Interfaces for Rapid Detection of Dental Bacteria. ACS Applied Materials & Interfaces, 2019, 11, 30640-30647.	8.0	48
86	PEGylated Protamine-Based Adsorbing Improves the Biological Properties and Stability of Tetrahedral Framework Nucleic Acids. ACS Applied Materials & Interfaces, 2019, 11, 27588-27597.	8.0	35
87	Targeted and effective glioblastoma therapy via aptamer-modified tetrahedral framework nucleic acid-paclitaxel nanoconjugates that can pass the blood brain barrier. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102061.	3.3	44
88	Enhanced Efficacy of Temozolomide Loaded by a Tetrahedral Framework DNA Nanoparticle in the Therapy for Glioblastoma. ACS Applied Materials & Interfaces, 2019, 11, 39525-39533.	8.0	67
89	Tetrahedral DNA Nanostructure-Delivered DNAzyme for Gene Silencing to Suppress Cell Growth. ACS Applied Materials & Interfaces, 2019, 11, 6850-6857.	8.0	67
90	An Intelligent DNA Nanorobot with <i>in Vitro</i> Enhanced Protein Lysosomal Degradation of HER2. Nano Letters, 2019, 19, 4505-4517.	9.1	153

#	Article	IF	CITATIONS
91	Tetrahedral Framework Nucleic Acids Promote Corneal Epithelial Wound Healing in Vitro and in Vivo. Small, 2019, 15, e1901907.	10.0	51
92	DNA-Based Nanomedicine with Targeting and Enhancement of Therapeutic Efficacy of Breast Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11, 15354-15365.	8.0	77
93	Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress <i>via</i> activating the Akt/Nrf2 pathway. Nanoscale, 2019, 11, 20667-20675.	5.6	56
94	The Clearance Effect of Tetrahedral DNA Nanostructures on Senescent Human Dermal Fibroblasts. ACS Applied Materials & Interfaces, 2019, 11, 1942-1950.	8.0	37
95	Aptamerâ€targeted <scp>DNA</scp> nanostructures with doxorubicin to treat protein tyrosine kinase 7â€positive tumours. Cell Proliferation, 2019, 52, e12511.	5.3	58
96	DNA Nanorobot Delivers Antisense Oligonucleotides Silencing c-Met Gene Expression for Cancer Therapy. Journal of Biomedical Nanotechnology, 2019, 15, 1948-1959.	1.1	8
97	Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1227-1236.	3.3	67
98	Anterior Cruciate Ligament Transection–Induced Cellular and Extracellular Events in Menisci: Implications for Osteoarthritis. American Journal of Sports Medicine, 2018, 46, 1185-1198.	4.2	61
99	Vascularization in Craniofacial Bone Tissue Engineering. Journal of Dental Research, 2018, 97, 969-976.	5.2	58
100	KDM6A promotes chondrogenic differentiation of periodontal ligament stem cells by demethylation of SOX9. Cell Proliferation, 2018, 51, e12413.	5.3	44
101	Overcoming drug-resistant lung cancer by paclitaxel loaded tetrahedral DNA nanostructures. Nanoscale, 2018, 10, 5457-5465.	5.6	123
102	Self-Assembled Tetrahedral DNA Nanostructures Promote Neural Stem Cell Proliferation and Neuronal Differentiation. ACS Applied Materials & Interfaces, 2018, 10, 7892-7900.	8.0	94
103	Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chemical Communications, 2018, 54, 1327-1330.	4.1	62
104	Anti-inflammatory and Antioxidative Effects of Tetrahedral DNA Nanostructures via the Modulation of Macrophage Responses. ACS Applied Materials & amp; Interfaces, 2018, 10, 3421-3430.	8.0	121
105	Cover Image, Volume 51, Issue 1. Cell Proliferation, 2018, 51, e12439.	5.3	0
106	Substrate stiffness regulated migration and angiogenesis potential of A549 cells and HUVECs. Journal of Cellular Physiology, 2018, 233, 3407-3417.	4.1	48
107	Regulating osteogenesis and adipogenesis in adiposeâ€derived stem cells by controlling underlying substrate stiffness. Journal of Cellular Physiology, 2018, 233, 3418-3428.	4.1	55
108	Enhancing engineered vascular networks in vitro and in vivo: The effects of <scp>IGF</scp> 1 on vascular development and durability. Cell Proliferation, 2018, 51, .	5.3	12

#	Article	IF	CITATIONS
109	Cover Image, Volume 51, Issue 6. Cell Proliferation, 2018, 51, e12554.	5.3	1
110	Nucleic acids and analogs for bone regeneration. Bone Research, 2018, 6, 37.	11.4	48
111	Research Progress of the Types and Preparation Techniques of Scaffold Materials in Cartilage Tissue Engineering. Current Stem Cell Research and Therapy, 2018, 13, 583-590.	1.3	16
112	Tetrahedral DNA Nanostructure Promotes Endothelial Cell Proliferation, Migration, and Angiogenesis via Notch Signaling Pathway. ACS Applied Materials & Interfaces, 2018, 10, 37911-37918.	8.0	48
113	Stem Cells and Cartilage Tissue Engineering. Current Stem Cell Research and Therapy, 2018, 13, 489-489.	1.3	3
114	Tetrahedral DNA Nanomaterial Regulates the Biological Behaviors of Adipose-Derived Stem Cells via DNA Methylation on Dlg3. ACS Applied Materials & Interfaces, 2018, 10, 32017-32025.	8.0	37
115	Inhibiting Methicillin-Resistant <i>Staphylococcus aureus</i> by Tetrahedral DNA Nanostructure-Enabled Antisense Peptide Nucleic Acid Delivery. Nano Letters, 2018, 18, 5652-5659.	9.1	117
116	Tetrahedral <scp>DNA</scp> nanostructures facilitate neural stem cell migration <i>via</i> activating <scp>RHOA</scp> / <scp>ROCK</scp> 2 signalling pathway. Cell Proliferation, 2018, 51, e12503.	5.3	52
117	Neuroprotective Effect of Tetrahedral DNA Nanostructures in a Cell Model of Alzheimer's Disease. ACS Applied Materials & Interfaces, 2018, 10, 23682-23692.	8.0	56
118	Tetrahedral DNA Nanostructure: A Potential Promoter for Cartilage Tissue Regeneration via Regulating Chondrocyte Phenotype and Proliferation. Small, 2017, 13, 1602770.	10.0	83
119	Effect of matrix stiffness on osteoblast functionalization. Cell Proliferation, 2017, 50, .	5.3	67
120	Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1809-1819.	3.3	55
121	Nanomaterials for Craniofacial and Dental Tissue Engineering. Journal of Dental Research, 2017, 96, 725-732.	5.2	68
122	The Effect of shape on Cellular Uptake of Gold Nanoparticles in the forms of Stars, Rods, and Triangles. Scientific Reports, 2017, 7, 3827.	3.3	280
123	DNA Nanostructures: Tetrahedral DNA Nanostructure: A Potential Promoter for Cartilage Tissue Regeneration via Regulating Chondrocyte Phenotype and Proliferation (Small 12/2017). Small, 2017, 13, .	10.0	2
124	Total magnetic resonance imaging burden of cerebral smallâ€vessel disease is associated with postâ€stroke depression in patients with acute lacunar stroke. European Journal of Neurology, 2017, 24, 374-380.	3.3	50
125	<scp>IGF</scp> â€1 promotes angiogenesis in endothelial cells/adiposeâ€derived stem cells coâ€culture system with activation of <scp>PI</scp> 3K/Akt signal pathway. Cell Proliferation, 2017, 50, .	5.3	85
126	Aptamer-Modified Tetrahedral DNA Nanostructure for Tumor-Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 36695-36701.	8.0	150

#	Article	IF	CITATIONS
127	Fabrication of Calcium Phosphate Microflowers and Their Extended Application in Bone Regeneration. ACS Applied Materials & Interfaces, 2017, 9, 30437-30447.	8.0	48
128	<i>MMPâ€2</i> and Notch signal pathway regulate migration of adiposeâ€derived stem cells and chondrocytes in coâ€culture systems. Cell Proliferation, 2017, 50, .	5.3	16
129	Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair. Scientific Reports, 2017, 7, 10553.	3.3	47
130	Curved microstructures promote osteogenesis of mesenchymal stem cells via the RhoA/ <scp>ROCK</scp> pathway. Cell Proliferation, 2017, 50, .	5.3	40
131	Substrate stiffness regulates arterial-venous differentiation of endothelial progenitor cells via the Ras/Mek pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1799-1808.	4.1	29
132	Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids and Surfaces B: Biointerfaces, 2017, 159, 349-359.	5.0	136
133	Effect of HLA Matching on Pediatric Renal Transplant Graft Survival in China. Transplantation Proceedings, 2017, 49, 1291-1293.	0.6	1
134	Modulation of chondrocyte motility by tetrahedral <scp>DNA</scp> nanostructures. Cell Proliferation, 2017, 50, .	5.3	59
135	Angiogenesis in a 3D model containing adipose tissue stem cells and endothelial cells is mediated by canonical Wnt signaling. Bone Research, 2017, 5, 17048.	11.4	52
136	Electrospun Poly(3-hydroxybutyrate- <i>co</i> -4-hydroxybutyrate)/Graphene Oxide Scaffold: Enhanced Properties and Promoted in Vivo Bone Repair in Rats. ACS Applied Materials & Interfaces, 2017, 9, 42589-42600.	8.0	99
137	Synthesis of an ethyleneimine/tetrahedral DNA nanostructure complex and its potential application as a multi-functional delivery vehicle. Nanoscale, 2017, 9, 18402-18412.	5.6	62
138	The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Research, 2017, 5, 17018.	11.4	127
139	Notch Signaling Pathway Regulates Angiogenesis via Endothelial Cell in 3D Coâ€Culture Model. Journal of Cellular Physiology, 2017, 232, 1548-1558.	4.1	27
140	The <scp>JAK</scp> / <scp>STAT</scp> 3 signalling pathway regulated angiogenesis in an endothelial cell/adiposeâ€derived stromal cell coâ€culture, 3D gel model. Cell Proliferation, 2017, 50, .	5.3	60
141	Fabrication of Electrospun 3D Nanofibrous Poly(3-Hydroxybutyrate-Co-4-Hydroxybutyrate)/Graphene Scaffolds for Potential Bone Tissue Engineering: Effects of Graphene on Scaffold Properties and Cellular Behaviors. Journal of Biomedical Nanotechnology, 2017, 13, 822-834.	1.1	6
142	Effects of Micro-environmental pH of Liposome on Chemical Stability of Loaded Drug. Nanoscale Research Letters, 2017, 12, 504.	5.7	47
143	Green and High-Efficiency Reduction of Graphene Oxide for Highly Loading Drug to Enhance Cancer Therapy. Journal of Biomedical Nanotechnology, 2017, 13, 1210-1220.	1.1	6
144	Application of Scaffold Materials in Cartilage Tissue Engineering. Pancreatic Islet Biology, 2017, , 21-39.	0.3	2

#	Article	IF	CITATIONS
145	Enhancement of Physicochemical Properties and Biocompatibility of Shape Memory Polymers by the Addition of Graphene Oxide. Journal of Biomedical Nanotechnology, 2017, 13, 678-687.	1.1	3
146	Kappa opioid receptor signaling protects cartilage tissue against posttraumatic degeneration. JCI Insight, 2017, 2, e88553.	5.0	22
147	Electrospun Fibrous Scaffolds for Cartilage Tissue Regeneration. Pancreatic Islet Biology, 2017, , 59-75.	0.3	0
148	Editorial (Thematic Issue: Important Roles of PPAR in Stem Cell Differentiation). Current Stem Cell Research and Therapy, 2016, 11, 176-176.	1.3	0
149	Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter. Bone Research, 2016, 4, 15036.	11.4	67
150	Injectable enzymatically cross linkable hydrogels: A minimally invasive cell free approach to regenerate damaged articular cartilage. Osteoarthritis and Cartilage, 2016, 24, S161.	1.3	1
151	Understanding the Biomedical Effects of the Self-Assembled Tetrahedral DNA Nanostructure on Living Cells. ACS Applied Materials & Interfaces, 2016, 8, 12733-12739.	8.0	56
152	Physiological oxygen tension modulates soluble growth factor profile after crosstalk between chondrocytes and osteoblasts. Cell Proliferation, 2016, 49, 122-133.	5.3	17
153	Softening Substrates Promote Chondrocytes Phenotype via RhoA/ROCK Pathway. ACS Applied Materials & Interfaces, 2016, 8, 22884-22891.	8.0	67
154	Lowâ€intensity pulsed ultrasound upregulates proâ€myelination indicators of Schwann cells enhanced by coâ€culture with adiposeâ€derived stem cells. Cell Proliferation, 2016, 49, 720-728.	5.3	22
155	<scp>PCL</scp> â€ <scp>PEG</scp> â€ <scp>PCL</scp> film promotes cartilage regeneration in vivo. Cell Proliferation, 2016, 49, 729-739.	5.3	44
156	Self-Assembled Tetrahedral DNA Nanostructures Promote Adipose-Derived Stem Cell Migration via IncRNA XLOC 010623 and RHOA/ROCK2 Signal Pathway. ACS Applied Materials & Interfaces, 2016, 8, 19353-19363.	8.0	80
157	Chronic Kidney Disease Impairs Bone Defect Healing in Rats. Scientific Reports, 2016, 6, 23041.	3.3	17
158	DNA methylation is critical for tooth agenesis: implications for sporadic non-syndromic anodontia and hypodontia. Scientific Reports, 2016, 6, 19162.	3.3	39
159	Overexpression of proteasomal activator PA28α serves as a prognostic factor in oral squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2016, 35, 35.	8.6	18
160	Morphologically Controlled Synthesis of Hydroxyapatite and Its Bioactivity on Osteoblast Cells. Journal of Nanoscience and Nanotechnology, 2016, 16, 6978-6985.	0.9	3
161	Hypoxia enhances angiogenesis in an adiposeâ€derived stromal cell/endothelial cell coâ€culture 3D gel model. Cell Proliferation, 2016, 49, 236-245.	5.3	23
162	Effects of low oxygen tension on gene profile of soluble growth factors in coâ€cultured adiposeâ€derived stromal cells and chondrocytes. Cell Proliferation, 2016, 49, 341-351.	5.3	43

#	Article	IF	CITATIONS
163	Chondrocytes Cocultured with Stromal Vascular Fraction of Adipose Tissue Present More Intense Chondrogenic Characteristics Than with Adipose Stem Cells. Tissue Engineering - Part A, 2016, 22, 336-348.	3.1	24
164	Smad signal pathway regulates angiogenesis via endothelial cell in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model. Molecular and Cellular Biochemistry, 2016, 412, 281-288.	3.1	26
165	Peroxisome Proliferator-Activated Receptor-γ: Master Regulator of Adipogenesis and Obesity. Current Stem Cell Research and Therapy, 2016, 11, 282-289.	1.3	90
166	Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Bacillus thuringiensis on Spodoptera litura. Journal of Microbiology and Biotechnology, 2016, 26, 1774-1780.	2.1	16
167	Adventitial Cells and Perictyes Support Chondrogenesis Through Different Mechanisms in 3-Dimensional Cultures With or Without Nanoscaffolds. Journal of Biomedical Nanotechnology, 2015, 11, 1799-1807.	1.1	17
168	Nanomaterials and bone regeneration. Bone Research, 2015, 3, 15029.	11.4	415
169	Regulation of Extracellular Matrix Remodeling Proteins by Osteoblasts in Titanium Nanoparticle-Induced Aseptic Loosening Model. Journal of Biomedical Nanotechnology, 2015, 11, 1826-1835.	1.1	6
170	Gene profile of soluble growth factors involved in angiogenesis, in an adiposeâ€derived stromal cell/endothelial cell coâ€culture, 3D gel model. Cell Proliferation, 2015, 48, 405-412.	5.3	17
171	<scp>TGF</scp> β signalling pathway regulates angiogenesis by endothelial cells, in an adiposeâ€derived stromal cell/endothelial cell coâ€culture 3D gel model. Cell Proliferation, 2015, 48, 729-737.	5.3	13
172	Independent effect of polymeric nanoparticle zeta potential/surface charge, onÂtheir cytotoxicity and affinity to cells. Cell Proliferation, 2015, 48, 465-474.	5.3	161
173	Insight into the Interaction of Graphene Oxide with Serum Proteins and the Impact of the Degree of Reduction and Concentration. ACS Applied Materials & Interfaces, 2015, 7, 13367-13374.	8.0	106
174	Associations between proteasomal activator PA28γ and outcome of oral squamous cell carcinoma: Evidence from cohort studies and functional analyses. EBioMedicine, 2015, 2, 851-858.	6.1	27
175	Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Based Electrospun 3D Scaffolds for Delivery of Autogeneic Chondrocytes and Adipose-Derived Stem Cells: Evaluation of Cartilage Defects in Rabbit. Journal of Biomedical Nanotechnology, 2015, 11, 105-116.	1.1	32
176	Lysophosphatidic acid mediates fibrosis in injured joints by regulating collagen type I biosynthesis. Osteoarthritis and Cartilage, 2015, 23, 308-318.	1.3	25
177	Tetraploid complementation proves pluripotency of induced pluripotent stem cells derived from adipose tissue. Cell Proliferation, 2015, 48, 39-46.	5.3	8
178	Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma. Biochemical and Biophysical Research Communications, 2015, 458, 123-127.	2.1	22
179	Enhanced biostability of nanoparticle-based drug delivery systems by albumin corona. Nanomedicine, 2015, 10, 205-214.	3.3	55
180	DNA-based plasmonic nanostructures. Materials Today, 2015, 18, 326-335.	14.2	68

#	Article	IF	CITATIONS
181	Clicking DNA to gold nanoparticles: poly-adenine-mediated formation of monovalent DNA-gold nanoparticle conjugates with nearly quantitative yield. NPG Asia Materials, 2015, 7, e159-e159.	7.9	107
182	Adenoviral vector-mediated overexpression of osteoprotegerin accelerates osteointegration of titanium implants in ovariectomized rats. Gene Therapy, 2015, 22, 636-644.	4.5	7
183	P34HB film promotes cell adhesion, in vitro proliferation, and in vivo cartilage repair. RSC Advances, 2015, 5, 21572-21579.	3.6	13
184	Tea Polyphenol–Functionalized Graphene/Chitosan as an Experimental Platform with Improved Mechanical Behavior and Bioactivity. ACS Applied Materials & Interfaces, 2015, 7, 20893-20901.	8.0	27
185	Cyclic mechanical stress modulates neurotrophic and myelinating gene expression of Schwann cells. Cell Proliferation, 2015, 48, 59-66.	5.3	25
186	Bio-electrospraying is a safe technology for delivering human adipose-derived stem cells. Biotechnology Letters, 2015, 37, 449-456.	2.2	19
187	TU-F-CAMPUS-T-04: Using Gold Nanoparticles to Target Mitochondria in Radiation Therapy. Medical Physics, 2015, 42, 3644-3644.	3.0	2
188	Snail and Slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma. Oncotarget, 2015, 6, 6794-6810.	1.8	99
189	The Role of the Wnt Signaling Pathway in the Osteogenic Differentiation of Human Adipose-derived Stem Cells under Mechanical Stimulation. Journal of Hard Tissue Biology, 2015, 24, 169-180.	0.4	Ο
190	Editorial (Thematic Issue: Potential Application of Mesenchymal Stem Cells in Craniofacial) Tj ETQq0 0 0 rgBT /Ov	verlock 10 1.3	Tf 50 382 Tc 0
191	Adipogenic differentiation potential of adiposeâ€derived mesenchymal stem cells from ovariectomized mice. Cell Proliferation, 2014, 47, 604-614.	5.3	27
192	Electrospun P34HB fibres: a scaffold for tissue engineering. Cell Proliferation, 2014, 47, 465-475.	5.3	20
193	New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. Journal of Orthopaedic Research, 2014, 32, 709-720.	2.3	16
194	Nanocomplex Based on Biocompatible Phospholipids and Albumin for Long-Circulation Applications. ACS Applied Materials & Interfaces, 2014, 6, 13730-13737.	8.0	31
195	Osteogenic differentiation of adiposeâ€derived stem cells promoted by quercetin. Cell Proliferation, 2014, 47, 124-132.	5.3	62
196	WNT6 Promotes the Migration and Differentiation of Human Dental Pulp Cells Partly through c-Jun N-terminal Kinase Signaling Pathway. Journal of Endodontics, 2014, 40, 943-948.	3.1	19
197	Surface characterization and osteoblast response to a functionally graded hydroxyapatite/fluoroâ€hydroxyapatite/titanium oxide coating on titanium surface by sol–gel method. Cell Proliferation, 2014, 47, 258-266.	5.3	24
198	Apoptotic Effects of Diosgeninlactoside on Oral Squamous Carcinoma Cells <i>in Vitro</i> and <i>in Vivo</i> . Biological and Pharmaceutical Bulletin, 2014, 37, 1450-1459.	1.4	7

#	Article	IF	CITATIONS
199	Electrospun Fibers for Dental and Craniofacial Applications. Current Stem Cell Research and Therapy, 2014, 9, 187-195.	1.3	50
200	The Endothelial-Mesenchymal Transition (EndMT) and Tissue Regeneration. Current Stem Cell Research and Therapy, 2014, 9, 196-204.	1.3	47
201	Potential Replication of Induced Pluripotent Stem Cells for Craniofacial Reconstruction. Current Stem Cell Research and Therapy, 2014, 9, 205-214.	1.3	7
202	Miscellaneous Animal Models Accelerate the Application of Mesenchymal Stem Cells for Cartilage Regeneration. Current Stem Cell Research and Therapy, 2014, 9, 223-233.	1.3	10
203	Development Course and an Application Strategy for Induced Pluripotent Stem Cells in Regenerative Medicine. Current Stem Cell Research and Therapy, 2014, 9, 244-253.	1.3	6
204	Biomaterial and Mesenchymal Stem Cell for Articular Cartilage Reconstruction. Current Stem Cell Research and Therapy, 2014, 9, 254-267.	1.3	17
205	Adipogenic and osteogenic differentiation of Linâ `CD271+Sca-1+ adipose-derived stem cells. Molecular and Cellular Biochemistry, 2013, 377, 107-119.	3.1	18
206	Effects of bone morphogenetic proteinâ€4 (BMP â€4) on adipocyte differentiation from mouse adiposeâ€derived stem cells. Cell Proliferation, 2013, 46, 416-424.	5.3	14
207	Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials, 2013, 34, 8521-8530.	11.4	293
208	Mechanical compressive force inhibits adipogenesis of adipose stem cells. Cell Proliferation, 2013, 46, 586-594.	5.3	20
209	Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: Perspectives from stem cell biology and molecular medicine. Journal of Cellular Physiology, 2013, 228, 938-944.	4.1	108
210	Lowâ€intensity pulsed ultrasound induced enhanced adipogenesis of adiposeâ€derived stem cells. Cell Proliferation, 2013, 46, 312-319.	5.3	20
211	<scp>BMP</scp> 4 promotes vascularization of human adipose stromal cells and endothelial cells <i>in vitro</i> and <i>in vivo</i> . Cell Proliferation, 2013, 46, 695-704.	5.3	7
212	Osteogenesis of Adipose-Derived Stem Cells. Bone Research, 2013, 1, 133-145.	11.4	77
213	Comparison of Effects of Mechanical Stretching on Osteogenic Potential of ASCs and BMSCs. Bone Research, 2013, 1, 282-290.	11.4	23
214	Editorial (Thematic Issue: Toxicity and Pharmacokinetics of Nanobiomaterials). Current Drug Metabolism, 2013, 14, 819-819.	1.2	0
215	C-Jun N-Terminal Kinase (JNK) Mediates Wnt5a-Induced Cell Motility Dependent or Independent of RhoA Pathway in Human Dental Papilla Cells. PLoS ONE, 2013, 8, e69440.	2.5	21
216	Review of and Perspectives on the Toxicology of Graphene-based Materials. Current Drug Metabolism, 2013, 14, 863-871.	1.2	12

#	Article	IF	CITATIONS
217	Polymeric Nanoparticles for a Drug Delivery System. Current Drug Metabolism, 2013, 14, 840-846.	1.2	49
218	Perspectives on the Toxicology of Cadmium-based Quantum Dots. Current Drug Metabolism, 2013, 14, 847-856.	1.2	12
219	Pharmacokinetics and Applications of Magnetic Nanoparticles. Current Drug Metabolism, 2013, 14, 872-878.	1.2	3
220	The Toxicity and Pharmacokinetics of Carbon Nanotubes as an Effective Drug Carrier. Current Drug Metabolism, 2013, 14, 879-890.	1.2	23
221	Toxicity of Carbon Nanotubes. Current Drug Metabolism, 2013, 14, 891-899.	1.2	22
222	Pharmacokinetics of CNT-based Drug Delivery Systems. Current Drug Metabolism, 2013, 14, 910-920.	1.2	3
223	Absorption, Pharmacokinetics and Disposition Properties of Solid Lipid Nanoparticles (SLNs). Current Drug Metabolism, 2012, 13, 447-456.	1.2	33
224	Absorption, Pharmacokinetics and Disposition of Biodegradable Nanoscale Preparations. Current Drug Metabolism, 2012, 13, 429-439.	1.2	4
225	Human Papillomavirus Type-Specific Prevalence in Women with Cervical Intraepithelial Neoplasm in Western China. Journal of Clinical Microbiology, 2012, 50, 1079-1081.	3.9	24
226	Toxicity of Biodegradable Nanoscale Preparations. Current Drug Metabolism, 2012, 13, 440-446.	1.2	32
227	Pharmacokinetics and Disposition of Nanomedicine Using Biodegradable PEG/PCL Polymers as Drug Carriers. Current Drug Metabolism, 2012, 13, 338-353.	1.2	19
228	Editorial [Hot Topic: Absorption, Pharmacokinetics and Disposition of Biodegradable Nanoscale Preparations (Guest Editors: ZhiYong Qian and YunFeng Lin)]. Current Drug Metabolism, 2012, 13, 337-337.	1.2	2
229	Cognitive Behavioral Therapy for Orthodontic Pain Control. Journal of Dental Research, 2012, 91, 580-585.	5.2	39
230	Jaggedâ€1â€mediated activation of notch signalling induces adipogenesis of adiposeâ€derived stem cells. Cell Proliferation, 2012, 45, 538-544.	5.3	35
231	The Osteogenic Response of Undifferentiated Human Adipose-Derived Stem Cells under Mechanical Stimulation. Cells Tissues Organs, 2012, 196, 313-324.	2.3	11
232	Mechanical stretch inhibits adipogenesis and stimulates osteogenesis of adipose stem cells. Cell Proliferation, 2012, 45, 158-166.	5.3	52
233	Characterization of αâ€smooth muscle actin positive cells during multilineage differentiation of dental pulp stem cells. Cell Proliferation, 2012, 45, 259-265.	5.3	11
234	Secreted factors from adipose tissue increase adipogenic differentiation of mesenchymal stem cells. Cell Proliferation, 2012, 45, 311-319.	5.3	20

#	Article	IF	CITATIONS
235	Explant Culture: An Efficient Method to Isolate Adiposeâ€Đerived Stromal Cells for Tissue Engineering. Artificial Organs, 2011, 35, 105-112.	1.9	30
236	Cephalometric Landmark Tracing Using Deformable Templates. , 2011, , .		0
237	Adipose stem cells originate from perivascular cells. Biology of the Cell, 2011, 103, 435-447.	2.0	87
238	Effects of bone morphogenetic protein 2 gene therapy on new bone formation during mandibular distraction osteogenesis at rapid rate in rabbits. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2011, 112, 50-57.	1.4	33
239	Bioengineered Periodontal Tissue Formed on Titanium Dental Implants. Journal of Dental Research, 2011, 90, 251-256.	5.2	59
240	Notch signalling pathway in tooth development and adult dental cells. Cell Proliferation, 2011, 44, 495-507.	5.3	41
241	Sequence analysis of PAX9, MSX1 and AXIN2 genes in a Chinese oligodontia family. Archives of Oral Biology, 2011, 56, 1027-1034.	1.8	31
242	Uniaxial cyclic tensile stretch inhibits osteogenic and odontogenic differentiation of human dental pulp stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 347-353.	2.7	25
243	Basic research Cyclic tensile stretch modulates osteogenic differentiation of adipose-derived stem cells via the BMP-2 pathway. Archives of Medical Science, 2010, 2, 152-159.	0.9	44
244	Individual Design and Rapid Prototyping in Reconstruction of Orbital Wall Defects. Journal of Oral and Maxillofacial Surgery, 2010, 68, 562-570.	1.2	49
245	Serum regulates adipogenesis of mesenchymal stem cells <i>via</i> MEK/ERKâ€dependent PPARγ expression and phosphorylation. Journal of Cellular and Molecular Medicine, 2010, 14, 922-932.	3.6	41
246	PHBV and predifferentiated human adiposeâ€derived stem cells for cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 94A, 603-610.	4.0	25
247	Osteogenic Induction of Adiposeâ€derived Stromal Cells: Not a Requirement for Bone Formation In Vivo. Artificial Organs, 2010, 34, 46-54.	1.9	36
248	γâ€secretase inhibitor induces adipogenesis of adiposeâ€derived stem cells by regulation of Notch and PPARâ€Î³. Cell Proliferation, 2010, 43, 147-156.	5.3	50
249	Engineered vascularized bone grafts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3311-3316.	7.1	207
250	Multilineage Differentiation of Dental Pulp Stem Cells from Green Fluorescent Protein Transgenic Mice. International Journal of Oral Science, 2010, 2, 21-27.	8.6	34
251	Effects of Î ³ -secretase inhibition on the proliferation and vitamin D3 induced osteogenesis in adipose derived stem cells. Biochemical and Biophysical Research Communications, 2010, 392, 442-447.	2.1	17
252	Application of Modified Retromandibular Approach Indirectly From the Anterior Edge of the Parotid Gland in the Surgical Treatment of Condylar Fracture. Journal of Oral and Maxillofacial Surgery, 2009, 67, 552-558.	1.2	55

#	Article	IF	CITATIONS
253	Bone marrow Derived Pluripotent Cells are Pericytes which Contribute to Vascularization. Stem Cell Reviews and Reports, 2009, 5, 437-445.	5.6	60
254	Sequential surgical treatment for panfacial fractures and significance of biological osteosynthesis. Dental Traumatology, 2009, 25, 171-175.	2.0	14
255	DAPT Enhances the Apoptosis of Human Tongue Carcinoma Cells. International Journal of Oral Science, 2009, 1, 81-89.	8.6	28
256	Outcome of Postsurgical Sequential Functional Exercise of Jaw Fracture. Journal of Craniofacial Surgery, 2009, 20, 46-48.	0.7	7
257	Association Analysis between the IRF6 G820A Polymorphism and Nonsyndromic Cleft Lip and/or Cleft Palate in a Chinese Population. Cleft Palate-Craniofacial Journal, 2009, 46, 89-92.	0.9	24
258	Combination of bone tissue engineering and BMPâ€⊋ gene transfection promotes bone healing in osteoporotic rats. Cell Biology International, 2008, 32, 1150-1157.	3.0	54
259	Expression of Pcp4 gene during osteogenic differentiation of bone marrow mesenchymal stem cells inÂvitro. Molecular and Cellular Biochemistry, 2008, 309, 143-150.	3.1	16
260	Bone regeneration by BMP-2 enhanced adipose stem cells loading on alginate gel. Histochemistry and Cell Biology, 2008, 129, 203-210.	1.7	45
261	Cell adhesive ability of a biological foam ceramic with surface modification. Applied Surface Science, 2008, 255, 409-411.	6.1	2
262	Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry. Science, 2008, 321, 218-223.	12.6	688
263	Identification of osteo–adipo progenitor cells in fat tissue. Cell Proliferation, 2008, 41, 803-812.	5.3	41
264	Odontogenic differentiation of adipose-derived stem cells for tooth regeneration: necessity, possibility, and strategy. Medical Hypotheses, 2008, 70, 540-542.	1.5	20
265	Orbital floor reconstruction: a retrospective study of 21 cases. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2008, 106, 324-330.	1.4	45
266	Dentin Sialophosphoprotein-Promoted Mineralization and Expression of Odontogenic Genes in Adipose-Derived Stromal Cells. Cells Tissues Organs, 2008, 187, 103-112.	2.3	45
267	Odontogenic tumours: a retrospective study of 1642 cases in a Chinese population. International Journal of Oral and Maxillofacial Surgery, 2007, 36, 20-25.	1.5	214
268	Ectopic andin situ bone formation of adipose tissue-derived stromal cells in biphasic calcium phosphate nanocomposite. Journal of Biomedical Materials Research - Part A, 2007, 81A, 900-910.	4.0	40
269	Odontogenic Potential of Bone Marrow Mesenchymal Stem Cells. Journal of Oral and Maxillofacial Surgery, 2007, 65, 494-500.	1.2	43
270	Osteogenic differentiation of adipose derived stem cells promoted by overexpression of osterix. Molecular and Cellular Biochemistry, 2007, 301, 83-92.	3.1	59

#	Article	IF	CITATIONS
271	Ectopic adipogenesis of preconditioned adipose-derived stromal cells in an alginate system. Cell and Tissue Research, 2007, 330, 567-572.	2.9	43
272	Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system. Cell Biology International, 2007, 31, 776-783.	3.0	50
273	Proliferation and pluripotency potential of ectomesenchymal cells derived from first branchial arch. Cell Proliferation, 2006, 39, 79-92.	5.3	31
274	Multilineage differentiation of adipose-derived stromal cells from GFP transgenic mice. Molecular and Cellular Biochemistry, 2006, 285, 69-78.	3.1	70
275	Pluripotency potential of human adipose-derived stem cells marked with exogenous green fluorescent protein. Molecular and Cellular Biochemistry, 2006, 291, 1-10.	3.1	57
276	Novel IRF6 Mutations in Chinese Patients with Van der Woude Syndrome. Journal of Dental Research, 2006, 85, 937-940.	5.2	18
277	Characterization of Ectomesenchymal Cells Isolated from the First Branchial Arch during Multilineage Differentiation. Cells Tissues Organs, 2006, 183, 123-132.	2.3	19
278	Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. Journal of Cellular and Molecular Medicine, 2005, 9, 929-939.	3.6	127
279	Expression of exogenous or endogenous green fluorescent protein in adipose tissue-derived stromal cells during chondrogenic differentiation. Molecular and Cellular Biochemistry, 2005, 277, 181-190.	3.1	24
280	The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2357-2362.	7.1	215
281	Structural Basis for the Functional Switch of theE. coliAda Proteinâ€,‡. Biochemistry, 2001, 40, 4261-4271.	2.5	28
282	Long-Term Survival of Hamster Hearts in Presensitized Rats. Journal of Immunology, 2000, 164, 4883-4892.	0.8	37
283	Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A. Nature, 1999, 400, 86-89.	27.8	96
284	Efficient side-chain and backbone assignment in large proteins: application to tGCN5. Journal of Biomolecular NMR, 1999, 15, 227-239.	2.8	36
285	The Pex16p Homolog SSE1 and Storage Organelle Formation in Arabidopsis Seeds. Science, 1999, 284, 328-330.	12.6	110
286	Rejection of hamster cardiac xenografts by rat CD4+ or CD8+ T cells. Transplantation Proceedings, 1999, 31, 959-960.	0.6	4
287	Rejection of cardiac xenografts by CD4+ or CD8+ T cells. Journal of Immunology, 1999, 162, 1206-14.	0.8	20