Yanhao Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7766906/publications.pdf

Version: 2024-02-01

236925 214800 2,793 47 25 47 h-index citations g-index papers 50 50 50 2314 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Pressureless two-step sintering of ultrafine-grained refractory metals: Tungsten-rhenium and molybdenum. Journal of Materials Science and Technology, 2022, 126, 203-214.	10.7	13
2	Revitalizing interface in protonic ceramic cells by acid etch. Nature, 2022, 604, 479-485.	27.8	132
3	Acidâ€inâ€Clay Electrolyte for Wideâ€Temperatureâ€Range and Longâ€Cycle Proton Batteries. Advanced Materials, 2022, 34, e2202063.	21.0	16
4	Enhanced mobility of cations and anions in the redox state: The polaronium mechanism. Acta Materialia, 2022, 232, 117941.	7.9	14
5	Transverse and Longitudinal Degradations in Ceramic Solid Electrolytes. Chemistry of Materials, 2022, 34, 5749-5765.	6.7	20
6	An Unbalanced Battle in Excellence: Revealing Effect of Ni/Co Occupancy on Water Splitting and Oxygen Reduction Reactions in Tripleâ€Conducting Oxides for Protonic Ceramic Electrochemical Cells. Small, 2022, 18, .	10.0	16
7	Lithium Manganese Spinel Cathodes for Lithiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2000997.	19.5	177
8	Ultraâ€Uniform Nanocrystalline Materials via Twoâ€Step Sintering. Advanced Functional Materials, 2021, 31, .	14.9	41
9	Coarse-grained reduced Mo Ti1â^'Nb2O7+ anodes for high-rate lithium-ion batteries. Energy Storage Materials, 2021, 34, 574-581.	18.0	13
10	Chemical and structural origin of hole states in yttria-stabilized zirconia. Acta Materialia, 2021, 203, 116487.	7.9	15
11	Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nature Energy, 2021, 6, 362-371.	39.5	274
12	Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nature Energy, 2021, 6, 495-505.	39.5	323
13	Determining the Criticality of Liâ€Excess for Disorderedâ€Rocksalt Liâ€Ion Battery Cathodes. Advanced Energy Materials, 2021, 11, 2100204.	19.5	31
14	Thermally Aged Li–Mn–O Cathode with Stabilized Hybrid Cation and Anion Redox. Nano Letters, 2021, 21, 4176-4184.	9.1	6
15	Orientation relationship of texture development in hot-rolled W during annealing. International Journal of Refractory Metals and Hard Materials, 2021, 97, 105527.	3.8	3
16	Unveiling exceptional sinterability of ultrafine α-Al2O3 nanopowders. Journal of Materiomics, 2021, 7, 837-844.	5.7	13
17	Towards pressureless sintering of nanocrystalline tungsten. Acta Materialia, 2021, 220, 117344.	7.9	18
18	Electrochemically Engineered, Highly Energy-Efficient Conversion of Ethane to Ethylene and Hydrogen below 550 °C in a Protonic Ceramic Electrochemical Cell. ACS Catalysis, 2021, 11, 12194-12202.	11.2	17

#	Article	IF	Citations
19	Pressureless two-step sintering of ultrafine-grained tungsten. Acta Materialia, 2020, 186, 116-123.	7.9	48
20	FSI-inspired solvent and "full fluorosulfonyl―electrolyte for 4 V class lithium-metal batteries. Energy and Environmental Science, 2020, 13, 212-220.	30.8	198
21	Glassâ€Ceramicâ€Like Vanadate Cathodes for Highâ€Rate Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1903411.	19.5	18
22	Unveiling Nickel Chemistry in Stabilizing Highâ€Voltage Cobaltâ€Rich Cathodes for Lithium″on Batteries. Advanced Functional Materials, 2020, 30, 1907903.	14.9	107
23	Sintering kinetics and microstructure evolution in α-Al2O3 nanocrystalline ceramics: Insensitive to Fe impurity. Journal of the European Ceramic Society, 2020, 40, 1505-1512.	5.7	15
24	Superconducting Cu/Nb nanolaminate by coded accumulative roll bonding and its helium damage characteristics. Acta Materialia, 2020, 197, 212-223.	7.9	41
25	Kinetic Rejuvenation of Li-Rich Li-Ion Battery Cathodes upon Oxygen Redox. ACS Applied Energy Materials, 2020, 3, 7931-7943.	5.1	12
26	Stabilized Coâ€Free Liâ€Rich Oxide Cathode Particles with An Artificial Surface Prereconstruction. Advanced Energy Materials, 2020, 10, 2001120.	19.5	74
27	Potential jumps at transport bottlenecks cause instability of nominally ionic solid electrolytes in electrochemical cells. Acta Materialia, 2020, 199, 264-277.	7.9	38
28	Gradient-morph LiCoO ₂ single crystals with stabilized energy density above 3400 W h L ^{â~1} . Energy and Environmental Science, 2020, 13, 1865-1878.	30.8	118
29	Conversionâ€Type MnO Nanorods as a Surprisingly Stable Anode Framework for Sodium″on Batteries. Advanced Functional Materials, 2020, 30, 2001026.	14.9	27
30	DC electrical degradation of YSZ: Voltageâ€controlled electrical metallization of a fast ion conducting insulator. Journal of the American Ceramic Society, 2020, 103, 3178-3193.	3.8	17
31	Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. Journal of Advanced Ceramics, 2019, 8, 1-18.	17.4	101
32	Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nature Energy, 2019, 4, 1049-1058.	39.5	248
33	Mobility transition at grain boundaries in twoâ€step sintered 8Âmol% yttriaâ€stabilized zirconia. Journal of the American Ceramic Society, 2018, 101, 1857-1869.	3.8	28
34	Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: <scp>II</scp> . Mapping electrode polarization and vacancy condensation in <scp>YSZ</scp> . Journal of the American Ceramic Society, 2018, 101, 1058-1073.	3.8	58
35	Oxygen potential transition in mixed conducting oxide electrolyte. Acta Materialia, 2018, 156, 399-410.	7.9	31
36	Purely electronic nanometallic resistance switching random-access memory. MRS Bulletin, 2018, 43, 358-364.	3.5	15

#	Article	IF	CITATIONS
37	A computational study of yttria-stabilized zirconia: II. Cation diffusion. Acta Materialia, 2017, 126, 438-450.	7.9	52
38	A computational study of yttria-stabilized zirconia: I. Using crystal chemistry to search for the ground state on a glassy energy landscape. Acta Materialia, 2017, 127, 73-84.	7.9	25
39	Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: I. grain growth study. Journal of the American Ceramic Society, 2017, 100, 876-886.	3.8	85
40	Thermal Runaway in Moldâ€Assisted Flash Sintering. Journal of the American Ceramic Society, 2016, 99, 2889-2894.	3.8	31
41	Onset Criterion for Flash Sintering. Journal of the American Ceramic Society, 2015, 98, 3624-3627.	3.8	86
42	Predicting the Onset of Flash Sintering. Journal of the American Ceramic Society, 2015, 98, 2333-2335.	3.8	65
43	YSZ fiber-reinforced porous YSZ ceramics with lowered thermal conductivity: Influence of the sintering temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 600, 76-81.	5.6	20
44	High-Strength Porous YSZ Ceramics Fabricated by TBA-Based Gelcasting with High Solid Loading Slurry. Key Engineering Materials, 2012, 512-515, 310-314.	0.4	0
45	Effect of YSZ fiber addition on microstructure and properties of porous YSZ ceramics. Journal of Materials Science, 2012, 47, 6326-6332.	3.7	11
46	A novel way to fabricate highly porous fibrous YSZ ceramics with improved thermal and mechanical properties. Journal of the European Ceramic Society, 2012, 32, 2213-2218.	5.7	69
47	Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method. Frontiers of Materials Science, 2012, 6, 79-86.	2.2	8