
Cora H Nijboer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7766457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cognitive performance during adulthood in a rat model of neonatal diffuse white matter injury. Psychopharmacology, 2022, 239, 745.	3.1	0
2	Nutritional Supplementation Reduces Lesion Size and Neuroinflammation in a Sex-Dependent Manner in a Mouse Model of Perinatal Hypoxic-Ischemic Brain Injury. Nutrients, 2022, 14, 176.	4.1	7
3	Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): a first-in-human, open-label intervention study. Lancet Neurology, The, 2022, 21, 528-536.	10.2	50
4	Intranasal mesenchymal stem cell therapy to boost myelination after encephalopathy of prematurity. Glia, 2021, 69, 655-680.	4.9	18
5	Nasal administration of mesenchymal stem cells reverses chemotherapy-induced peripheral neuropathy in mice. Brain, Behavior, and Immunity, 2021, 93, 43-54.	4.1	23
6	Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. Journal of Neurochemistry, 2021, 158, 59-73.	3.9	38
7	The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity. Glia, 2021, 69, 1311-1340.	4.9	10
8	Chronic social stress lessens the metabolic effects induced by a high-fat diet. Journal of Endocrinology, 2021, 249, 19-30.	2.6	4
9	Regenerative Therapies to Restore Interneuron Disturbances in Experimental Models of Encephalopathy of Prematurity. International Journal of Molecular Sciences, 2021, 22, 211.	4.1	8
10	Postnatal Nutrition to Improve Brain Development in the Preterm Infant: A Systematic Review From Bench to Bedside. Frontiers in Physiology, 2019, 10, 961.	2.8	31
11	Intranasal Stem Cell Treatment as a Novel Therapy for Subarachnoid Hemorrhage. Stem Cells and Development, 2018, 27, 313-325.	2.1	45
12	Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia, 2018, 66, 221-238.	4.9	188
13	SOX4 inhibits oligodendrocyte differentiation of embryonic neural stem cells in vitro by inducing Hes5 expression. Stem Cell Research, 2018, 33, 110-119.	0.7	29
14	Forkhead box protein P1, a key player in neuronal development?. Neural Regeneration Research, 2018, 13, 801.	3.0	3
15	Repair of neonatal brain injury: bringing stem cellâ€based therapy into clinical practice. Developmental Medicine and Child Neurology, 2017, 59, 997-1003.	2.1	35
16	A quantitative method for microstructural analysis of myelinated axons in the injured rodent brain. Scientific Reports, 2017, 7, 16492.	3.3	34
17	FOXP1 Promotes Embryonic Neural Stem Cell Differentiation by Repressing Jagged1 Expression. Stem Cell Reports, 2017, 9, 1530-1545.	4.8	56
18	Delayed administration of neural stem cells after hypoxia–ischemia reduces sensorimotor deficits, cerebral lesion size, and neuroinflammation in neonatal mice. Pediatric Research, 2017, 81, 127-135.	2.3	28

Cora H Nijboer

#	Article	IF	CITATIONS
19	Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Progress in Neurobiology, 2016, 136, 28-49.	5.7	110
20	Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-μ. Pain, 2015, 156, 2184-2192.	4.2	60
21	The Neonatal Brain Is Not Protected by Osteopontin Peptide Treatment after Hypoxia-Ischemia. Developmental Neuroscience, 2015, 37, 142-152.	2.0	14
22	Development of Cerebral Gray and White Matter Injury and Cerebral Inflammation over Time after Inflammatory Perinatal Asphyxia. Developmental Neuroscience, 2015, 37, 78-94.	2.0	34
23	Assessment of long-term safety and efficacy of intranasal mesenchymal stem cell treatment for neonatal brain injury in the mouse. Pediatric Research, 2015, 78, 520-526.	2.3	74
24	The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. Journal of Neuroinflammation, 2014, 11, 2.	7.2	77
25	Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Experimental Neurology, 2014, 261, 53-64.	4.1	132
26	Long-Term Functional Consequences and Ongoing Cerebral Inflammation after Subarachnoid Hemorrhage in the Rat. PLoS ONE, 2014, 9, e90584.	2.5	70
27	Intranasal Administration of Human MSC for Ischemic Brain Injury in the Mouse: In Vitro and In Vivo Neuroregenerative Functions. PLoS ONE, 2014, 9, e112339.	2.5	76
28	Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiology of Disease, 2013, 54, 432-444.	4.4	67
29	Astrocyte GRK2 as a novel regulator of glutamate transport and brain damage. Neurobiology of Disease, 2013, 54, 206-215.	4.4	17
30	Intranasal Mesenchymal Stem Cell Treatment for Neonatal Brain Damage: Long-Term Cognitive and Sensorimotor Improvement. PLoS ONE, 2013, 8, e51253.	2.5	143
31	Extent of Bilateral Neuronal Network Reorganization and Functional Recovery in Relation to Stroke Severity. Journal of Neuroscience, 2012, 32, 4495-4507.	3.6	208
32	Targeting the p53 pathway to protect the neonatal ischemic brain. Annals of Neurology, 2011, 70, 255-264.	5.3	88
33	Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic–ischemic brain injury. Brain, Behavior, and Immunity, 2010, 24, 812-821.	4.1	80
34	Cell-specific roles of GRK2 in onset and severity of hypoxic-ischemic brain damage in neonatal mice. Brain, Behavior, and Immunity, 2010, 24, 420-426.	4.1	31
35	GRK2: A Novel Cell-Specific Regulator of Severity and Duration of Inflammatory Pain. Journal of Neuroscience, 2010, 30, 2138-2149.	3.6	103
36	Alternate Pathways Preserve Tumor Necrosis Factor-α Production After Nuclear Factor-κB Inhibition in Neonatal Cerebral Hypoxia–Ischemia. Stroke, 2009, 40, 3362-3368.	2.0	50

#	Article	IF	CITATIONS
37	A Dual Role of the NF-κB Pathway in Neonatal Hypoxic-Ischemic Brain Damage. Stroke, 2008, 39, 2578-2586.	2.0	101